ohsome_green_region.ipynb 181 KB
Newer Older
Sarah Heidekorn's avatar
Sarah Heidekorn committed
1
2
3
4
5
6
7
8
9
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "inside-matthew",
   "metadata": {},
   "source": [
    "# ohsome green regions (via tree related tags)\n",
    "\n",
10
    "Welcome back to the ohsome Region of the month format where you can learn and get inspiration about potential applications of the [ohsome API](https://docs.ohsome.org/ohsome-api/v1/). This time we looked at trees, more precisely forests, in four different canadian regions (Edmonton, Halifax, Ottawa and Vancouver) looking for the green region of the month, which means there will be a winner announced at the end of this blogpost. \n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
11
    "This time, the analysis will be done via jupyter notebook using the python programming language."
Sarah Heidekorn's avatar
Sarah Heidekorn committed
12
13
14
15
16
17
18
   ]
  },
  {
   "cell_type": "markdown",
   "id": "appropriate-balloon",
   "metadata": {},
   "source": [
19
    "### **1. Data**\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
20
    "\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
21
    "As always there is no request without input information and, concerning the boundaries of the request, you can get a GeoJSON with region boundaries [here](https://osm-boundaries.com). This file will be used as spatial input to add the information of the boundaries of your request.\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
22
23
    "\n",
    "\n",
24
    "### **2: Import of libraries**\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
25
    "\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
26
    "At first you'll have to import libraries that help you handling the data later on. This includes a range of things, being it sending the get/post request itself or plotting the output data.\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
27
28
29
30
31
32
    "\n",
    "_e.g.: numpy for stats, pandas for analytics or json for simply handling json-files as you will see further down in the code_"
   ]
  },
  {
   "cell_type": "code",
33
   "execution_count": 1,
Sarah Heidekorn's avatar
Sarah Heidekorn committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
   "id": "overall-iraqi",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "        <script type=\"text/javascript\">\n",
       "        window.PlotlyConfig = {MathJaxConfig: 'local'};\n",
       "        if (window.MathJax) {MathJax.Hub.Config({SVG: {font: \"STIX-Web\"}});}\n",
       "        if (typeof require !== 'undefined') {\n",
       "        require.undef(\"plotly\");\n",
       "        requirejs.config({\n",
       "            paths: {\n",
       "                'plotly': ['https://cdn.plot.ly/plotly-latest.min']\n",
       "            }\n",
       "        });\n",
       "        require(['plotly'], function(Plotly) {\n",
       "            window._Plotly = Plotly;\n",
       "        });\n",
       "        }\n",
       "        </script>\n",
       "        "
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# import of useful libraries for the analysis (e.g. pandas -> analysis, \n",
    "# json -> for handling json responses)\n",
    "\n",
    "import pandas as pd\n",
    "import geopandas as gpd\n",
    "import numpy as np\n",
    "import json\n",
    "import geojson\n",
    "import requests\n",
    "import plotly\n",
    "import IPython\n",
    "import matplotlib.pyplot as plt\n",
    "\n",
    "\n",
    "# for generating interactive graphs\n",
    "import plotly.graph_objs as go\n",
    "\n",
    "from IPython.display import *\n",
    "from geojson import MultiPolygon\n",
    "\n",
    "plotly.offline.init_notebook_mode(connected=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "silent-medicare",
   "metadata": {},
   "source": [
91
    "### **3: Defining a function and the spatial & temporal boundaries**\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
92
    "\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
93
    "Then you'll have to define the spatial and temporal boundaries of the request you intend to send. Begin by defining a variable for the ohsome API as well as a function to help building your request.\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
94
95
96
97
98
    "Below you will realize that two functions have been defined as there will be two different types of requests, quite similar to the ones sent in the [ohsome street network analysis](http://k1z.blog.uni-heidelberg.de/2021/01/18/ohsome-street-network-analysis-part-1/). But more information is to be found in the next step of this blogpost."
   ]
  },
  {
   "cell_type": "code",
99
   "execution_count": 2,
Sarah Heidekorn's avatar
Sarah Heidekorn committed
100
101
102
103
   "id": "specialized-henry",
   "metadata": {},
   "outputs": [],
   "source": [
Sarah Heidekorn's avatar
Sarah Heidekorn committed
104
    "ohsome_api = \"https://api.ohsome.org/v1\"         #set a variable for the API\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
105
    "\n",
106
    "# define a function for the filters\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
107
108
109
110
111
112
113
114
    "def elements(agg,**params):\n",
    "    res = requests.post(ohsome_api+\"/elements\"+agg,params)\n",
    "    return res\n",
    "\n",
    "def users(agg,**params):\n",
    "    resU = requests.post(ohsome_api+\"/users\"+agg,params)\n",
    "    return resU\n",
    "\n",
115
116
    "#define the spatial boundaries:\n",
    "with open(\"yourpath/marchregions.geojson\") as f: #your path: insert the path to your file\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
117
118
    "    regions = json.load(f)\n",
    "    regions = json.dumps(regions)\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
119
    "#display(regions)                                # optional -> if you want to check wether your operation worked\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
120
    "\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
121
122
123
    "# define time intervals\n",
    "t_mon = \"2008-01-01/2021-02-01/P1M\"\n",
    "filter_req = 'landuse=forest or natural=wood and geometry:polygon'\n"
Sarah Heidekorn's avatar
Sarah Heidekorn committed
124
125
126
127
128
129
130
   ]
  },
  {
   "cell_type": "markdown",
   "id": "secret-salmon",
   "metadata": {},
   "source": [
131
    "### **4: Requests**\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
132
    "\n",
133
    "The code below is dealing with how you can phrase your exact request. To keep it simple and get a first look at the data the request only asks for the overall density of wood/forest in the regions of interest.\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
    "\n",
    "\n",
    "For this months analysis you can request the data by using the following conditions:\n",
    "\n",
    "For the forest dataset:\n",
    "\n",
    "_endpoint\t->\t/elements/area/density/groupBy/boundary_\n",
    "\n",
    "_timestamp  \t->\t2008-01-01/2021-02-01/P1M_\n",
    "\n",
    "_filter\t\t->\t(landuse=forest or nature=wood) and geometry:polygon_\n",
    "\n",
    "\n",
    "For the user dataset:\n",
    "\n",
    "_endpoint\t\t->\t/users/groupBy/boundary_\n",
    "\n",
    "_timestamp\t\t->\t2008-01-01/2021-02-01/P1M_\n",
    "\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
153
    "_filter\t\t    ->\tlanduse=forest or nature=wood and geometry:polygon_\n",
154
155
156
    "\n",
    "\n",
    "\n",
157
    "_-> You might wonder why there was only made use of tree-RELATED tags instead of the tree key itself for this analysis. The problem was that said key wasn’t used because over the whole time span there was zero tree information given, yet, **BUT** at least for Ottawa a tree import has been [proposed in 2017](https://wiki.openstreetmap.org/wiki/Ottawa/Import/Trees) so there might be data for Ottawa soon! <-_"
158
159
160
161
   ]
  },
  {
   "cell_type": "markdown",
162
   "id": "loving-bulgaria",
163
164
165
   "metadata": {},
   "source": [
    "## **Analysis Part 1 - Density**"
Sarah Heidekorn's avatar
Sarah Heidekorn committed
166
167
168
169
   ]
  },
  {
   "cell_type": "code",
170
   "execution_count": 3,
Sarah Heidekorn's avatar
Sarah Heidekorn committed
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
   "id": "greater-eligibility",
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'https://api.ohsome.org/v1/elements/area/density/groupBy/boundary'"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
Sarah Heidekorn's avatar
Sarah Heidekorn committed
187
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGbCAYAAAAsiy9HAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABxiklEQVR4nO3dd2Bb5b3/8fdzNLy3HWcvyITssMMuECh7UyBQ2nKhvcC9XEahA/praSnjQhlt4DJK2Xu2bAiQshIgBAghgwwnThzH25YsnaPz/P44kiInjuOhZev7oqqsc3SOHp0k0sfPVFprhBBCCCEyiZHqAgghhBBCJJsEICGEEEJkHAlAQgghhMg4EoCEEEIIkXEkAAkhhBAi47hTXYBEKy8v16NHj051MYQQQggRB5999tlWrXVFX88z4APQ6NGjWbx4caqLIYQQQog4UEqti8d5pAlMCCGEEBlHApAQQgghMo4EICGEEEJknAHfB6gzpmmyYcMG2tvbU12UASk7O5vhw4fj8XhSXRQhhBCiUxkZgDZs2EBBQQGjR49GKZXq4gwoWmvq6urYsGEDY8aMSXVxhBBCiE5lZBNYe3s7ZWVlEn4SQClFWVmZ1K4JIYRIaxkZgAAJPwkk11YIIUS6y9gAJIQQQojMJQEoRVwuF9OnT4/ebrzxxh2es2DBAo499tiElmPBggV8+OGHCX0NIYQQIt1kZCfodJCTk8OSJUtSXQwWLFhAfn4++++/f6qLIoQQQiSN1AClmddee42JEycyZ84cnnvuuej266+/nvPOO48jjzyS0aNH89xzz3HVVVcxZcoU5s6di2maALz99tvMmDGDKVOmcMEFFxAIBABnSZDrrruOmTNnMmXKFJYvX87atWuZP38+t912G9OnT+eDDz5g3bp1HH744UydOpXDDz+c9evXA3D++edz6aWXsv/++zN27FieeeaZ5F8cIYQQIk4yvgbody9/w7Lq5riec/LQQq47bo8un+P3+5k+fXr08TXXXMMJJ5zAz372M9555x123313zjjjjA7HrF69mnfffZdly5ax33778eyzz3LTTTdx0kkn8c9//pO5c+dy/vnn8/bbbzN+/HjmzZvH3/72N/7rv/4LgPLycj7//HP++te/csstt3Dfffdx0UUXkZ+fzxVXXAHAcccdx7x58zjvvPN44IEHuPTSS3nhhRcA2LRpEwsXLmT58uUcf/zxnHrqqXG7ZkIIIUQySQ1QikSawCK3M844g+XLlzNmzBjGjRuHUopzzjmnwzFHH300Ho+HKVOmEAqFmDt3LgBTpkxh7dq1fPfdd4wZM4bx48cDcN555/H+++9Hjz/55JMBmDVrFmvXru20XB999BE/+tGPADj33HNZuHBhdN+JJ56IYRhMnjyZmpqauF0LIYQQItkyvgZoVzU1ydbVEPKsrCwADMPA4/FEn2sYBpZlobXu8tyR410uF5Zl9bg8keOBXb6WEEIIkc6kBiiNTJw4kTVr1rB69WoAHn/88R4fv3btWlatWgXAww8/zMEHH9zlMQUFBbS0tEQf77///jzxxBMAPProo8yZM6dHZRD9g7lxI+0rVkRvgZUrozcdDKa6eEIIkXAZXwOUKtv3AZo7dy433ngj9957Lz/84Q8pLy9nzpw5fP31190+Z3Z2Ng8++CCnnXYalmWx1157cdFFF3V5zHHHHcepp57Kiy++yJ133skdd9zBBRdcwM0330xFRQUPPvhgb9+iSFN199/Plptv2en+rPHjGfnA/bjLy5NYKiGESC410JsyZs+erRcvXtxh27fffsukSZNSVKLMINc4PdU9+He2/PnPFBx1FIVHHx3euu0zINTYSM2fb8IzeDAj//4gnsrK1BRUCCF2Qin1mdZ6dl/PIzVAQmSI+ocecsLP3LkMu+VmlLvzf/5Z48ZRdeF/sO6ccxn19wfxDBuW5JIKIUTiSQASYoDRWuP7+GPqH/oH/q+/hlAIbJtQUxMFRx7JsJtv2mn4AcidNYuRDz7A+p/+jPX/8R+MffllWd9NCDHgSAASYgBpefddam+7ncCKFbhKS8k/9BCU14syXLgHV1J2/vkoj2eX58mZOpXBv7qW6qt/ie+TT8nbd5/EF16IAcT3xReYVVXkH3QQruLinT5PWxa4XPJLRgpIABJiAKn93/8l1NzCkBtuoPDYH2LETF3QUwVHHYXxxz/R+NSTEoD6OR0KEWpsxF1WluqiZATfokWs/+nP0IEAuFzk7rUXefvsjcrKRrndaNMksOI72pctI7D6e3C5cBUW4ioq2nZfXITKygZto7VGeTy4S8twl5c5gUop0BodsrH9PrTPh+3zoUN2tBzekSPIP+xwXPl5SXvv2rYJNTRgbdlCqKUFLAttms4t/DOGQda4cWSNHYtyu7H9fnyLF9P28cfYrW0ot9u5edzgdqPcHpTLQNs22PHrtywBSIgBxPa3k7vP3hSfcnKfz2VkZ1N0wvE0PP4ElfX1uEtL41BCQWstvHoVWO2Acr7IlNr2c4d7Yxf7IPx/O2U2B9j4yFf4NzQz7Iw9KJwWh47tLi8MngLD94JBk8Bw7fy5IRNMv3OMJ7vvr53m2pcto+rin+MZNozBv/0tbR99RMubb1L7lzs6PM89aBDZkyeTf9jh0SbqUHMzoaZGrNpaAqtWYQcCTs2QUuhgkFBjY4/Lo3JyKDj8cPIPOrDT2l9thbBqNhOs2oC5cSPaNFEeD8rrdfabJjoY7PI+ViT0dKts2dl4R48muHp19HWNwkKnViwSmCwLbHvXJ+sFCUBCDCA6EOhTrc/2Sk4/nYZ/PEzT889T9pOfxO28GW3R/8E3z0PlnoAGrbe7tzvZFt6ODg/a227bTkKQbzNseAtsE7KKYeNjXxNa9zUlk/v4Hsw2WHy/87MnF7KLwXA7Qci2nMBjtTv3OuQ8z1sAR/4eZp0fDnEx6tfAyjfg+/dg+lkw6bg+FjA1AmvWsP6nP8MoLGDk/ffhGTKEvH33YdB//xe2348OhZwvesPAVVTU4/Nr08SqbyDU1AiAMgwwDIycHIzcXIycHIiEHNvG/+VSml56keZXX6P5lVe6PLerpATP8OGoLK9TVtMErZ0mdI8HleXFyM+LPja8XvB4nJoaw3Amx9UaV2ER7kGDcFdU4CoscI71eJyanPDPOhgksHw5/m++IbhqNXn77kveAQeQO3uW8x62f9+27fRldLmcvztGfKYwlACUIvn5+bS2tkYf//3vf2fx4sXcddddOz0m9jnz588nNzeXefPmsXz5cs4880yUUjzzzDPstttuyXgLIg3ZwSDKG78AlLX77uTMmkXDU09ResEFGdtPQQeDBFatQndW/a41hGKq+WNvloW2Qs7+kI02g/DOw6jimRT/+o0dOqNvvede/J9/7jxQsbVDoNxu50suLw8jJxs7GET7/dj+9vBvyHrbDO0aCFm0vLsAz7ChjLzzTrwjR7Lxvy9n87vvYu75H+TOnoUOBLD97ZibNmFWrcfcuJGik0+h6Ngf7uKCaGhYA1WLoPoLCLaCHXKSluFxanrcOR3vV74Br/wXfPsS/PBWaFwPK9+EFa9D3crwiZUTovpJAAq1tLD5//2ewKpVWLW1hOrqcJWUMPL++/EMGdLhuZ19sfeU8njwVA7CUzlo1092ucidOYPcmTMYfO21BKuqwoF6O4aBe9AgXPn5fS5fT2RPmEDRCSd067mRoBdvEoD6qdgJDl944QVOOOEEfve736WwRCId6EAAFccaIICSM06n+qqr8X3yCXn77hvXc6e7UEsLjU89Rf1D/8DasiWOZ96E64g3Y+ZiAquhgdo77sBdOQh3cQk6WtuD09fDMrF9PuzWNrTfj8rOxsjORmVno1zhJqiYwIRSFB59NIN/82tchYUADL/zDjb9+jfU3XMPdfd0LJGrtBRsm+Da/6XwmKOdL52dUQpKxzq3aWfs/Hmx9v2FU2v05m/hjhnhF/XC6ANhr5/CuCOcpsHG9d07X4ppy2Ljf19O28cfkz9nDjl77om7ooLC444la8yYVBevA+X1kiW/GO9AAlAaevnll/nDH/5AMBikrKyMRx99lMrtJqS7/vrryc/PZ/Lkydx+++24XC7ef/993n33XU488USqqqpob2/nsssu48ILL2TdunX84Ac/4KOPPqK0tJSDDz6Y3/zmNxx55JEpepci3rTW6GAQleWN63kLjjwS44Y/0vjUU3EPQFprp7+Ay9X1F26YVVeH/8ulBFasiFbRR2s+dDgw6I5NRzq8Xbe3Y9bUYG6qxqqtRaHAE+5gGel06XZ32Nb+zTfYra3k7rsvg668EiOv886kyrOtej/2hsvl/GwY4HKjXroYNi9lzRtDaP7Xqx0CUMtbb0EoxIi77yY7QZOIKrebIX/6IyVnnw0hy2nOyMrCXTkYV34ezf/6Fxsv/x/a/v0h+QfGeRkcw4C9fwa7/wCWPgmDp8LYg8Ebc02LRjg1Simite52LeeWm2+hbeFCBv+/31Fy+ukJLplIBAlAr/4SNn8V33MOngJH39jlU7ZfCqO+vp7jjz8egDlz5vDxxx+jlOK+++7jpptu4tZbb+30PMcccwwXXXQR+fn5XHHFFQA88MADlJaW4vf72WuvvTjllFMYNWoUV199NRdddBH77LMPkydPlvAz0IQ7C8azDxDEdIZ+5FHs9l9QdOIJFBxySLSTZHfY7e0EVqzAt2gxvkWL8H/9NXZbmzNKJtLBMRIW3NuFCbcb5fVgt/kwq6s7f4HY5qLwTW23XXm9eCorcQ8dQvbkcCcY04p2tNQhq+NjyyL/0EMpnTePnCl79ukaAtC0EarfgQP+iwLlpvHppwm1tkVH6LS8/gaekSPJmjix76/VBaXUTt9P/g9+gKu4mMann45/AIooHQOH/HKHzVprrgp8zzR3kHOCbR2DURLoUIjvTzgBNJRdcAGFxx3r9HPpROMzz1D/0EOUnHuuhJ9+TAJQiuTk5LBkyZLo40j/HoANGzZwxhlnsGnTJoLBIGN6WJ16xx138PzzzwNQVVXFypUrKSsr46c//SlPP/008+fP7/DaYmCwA84ipvHsAxRRcemlKI+H5pdepvWddzAKCvCOGIGrohx3WTnu8sitDG2amJs2Y9ZsxqzaQHDNGie4hPsfeEePJv/AA3EVFzsdK7Oy0La9Q/8ZLAsd3PZYedyUnP0jcqZOJXvyZFRubv/qk7TkUafT8sx5FJY20PDII7S++y5Fxx1LqLGRto8/puzH56f0PRleL0Unnkj9I49g1dUlddj8V1u/4rW2NSwoKeKIzUuoHHlA0l4boO3f/ya4ajXuwYPZ9KtfUfuXv5B3wAHoQDu2v93pGOz3Y/v9BL7/nrz996fy6quSWkYRXxKAdlFTkwqXXHIJl19+OccffzwLFizg+uuv7/axCxYs4K233uKjjz4iNzeXQw45hPb2dgB8Ph8bNmwAoLW1lYKCgkQUX6SIDgYA4t4EBuDKz6fyyisZ9N//TduHH9Ly1tuYNZsJba0jsPw7rLq6HYa+uoqL8QwdSs706RSddJLToXrmDDyDutGBc6CxQ/D5P2DsoVA6hpziUbgHD6b51VcpOu5YWt5+ByyLgiOPSnVJKT7tVOr//neaXnghqSP/nvzuSXJcWVi6nbu/eYD/l+QA1Pj007hKS9n9jddp+3QR9Q88QNu//42Rk4MKj7Ay8vJwVZSTO3s2FZdd2uWM6iL9yZ9eGmpqamJYeP2lhx56qMfHlpSUkJuby/Lly/n444+j+66++mrOPvtsRo0axc9+9jNe2cWwSNG/6IATgOLdBBZLud3kH3QQ+Qcd1PG1w/OYWLW1GFlZuCsrMbIH/pwvHZjt8O4NsOVbZySTigzZdUHQB01VcOQfAGdUS+FRR9Hw2GOEmptpfuN1PMOGkb3nHil+E5C1227kzJpF49PPJG3kX1OgidfXvs4JI48ge8ljPKw+5ZyGFYwvGZ/w1wawamtpeXcBpfPmobxe8uccQP6c5AYw0VFrsJX1Lds6xG/xbeHTzZ+yePPiLo7qGQlAaej666/ntNNOY9iwYey7776sWbOm28fOnTuX+fPnM3XqVCZMmMC+4U6r7733HosWLeLf//43LpeLZ599lgcffJAf//jHiXobIskiASjeo8C6QxkG7pIS3CUlSX/ttNC0EZ48B6o/dzr3Qrgzdsip/dEhGHMQTDgmekjhMUdT/9BDNL3wIm0ffkTpueemTZNe8amnsumaa/AtWkTe3nsn/PVeWv0SgVCA0yfPY/AH9/N8cRn/+9n/Mv8H8xP+2gCNL7wAlkXxqacm5fVE15bWLuWydy9jq39rh+1ew8v0QdPj9jpKdzYvwAAye/ZsHelbE/Htt98yKUGjLIRDrnHytX+3gjUnnMCwv/yFwqOkg/tO2TYEmiCnk7AW9EFbLTtOUEjHCQqjFDSugxcudib9O+kemHRst4qhtWb14T8g1NiI7fMx+sknyJk2rY9vLj5sv5+VBx2Mu3IQ2eMnhEfphWefNgyM7Gzy5swhb84BO+0o3F1aa45/4XgKswp59JhH4S/T+XvFEG41N3DHoXcwY9AMlFIopTAwMJThPEbt+DNqlyEysHo1m6//HYOu+B9ypk1z/hzmzsVTMYiKB+/BZ/mi8ynp8AhDHfNn3mFfeHvstvAPHR5v/7wsVxaD8wanTeBNJy+tfonfffg7BuUO4rJZl5FlOL/QFXgLmFIxhSxXFkqpz7TWs/v6WlIDJMQAkcg+QL2y/hNnuHNXuvwC6GJfb44LtjrNU7XLnbBy/iswOmakkx2Cew6KmZSvB0p3g/NegUHdH8GllKLg6LnU3/8A7iFDyJ46teevmyBGTg7lF19M49NP0/7NN84Xt22D7axLZTc30/DYYxj5+RQcfhiDrrqq1x2mF9csZm3zWv5wgNM8SPFIzvK18XjxUC5999Ien29EwQj2GrwXsytnk+fJY1ndMr6p+4bNbZvJ9+Rz7PPVTF1Uzcp5Z/PuRXthuuCH69Zz76wGXn0seWveDcsfxsHDD2bOsDmUZJd0CFrbB6bItu2DVlfhbPtjbG0TDAUJ2AGCoaDzcyiAGTIJhAIE7W3bIvuDdufPCekQxVnFlGaXUpxVjNYa0zaj+82QiWk7S2RkubLIcmc59zE3QxnR0GraJpZtsbltM6+ufZW9B+/NrQffSnF2cQL/BCQACTFgJKMPUI8svA1Wveksk9CpLmqfu6yZ7uVx7myomAAzz4Ovn3HKFxuAvn3ZCT9zLoey3btYj4voQpTOzwbsfjhk93xpg8Kjj6H+/gcoPPKItKsNKLvgx5Rd0HkTuTZN2j7+hObXXqXppZcxCgoZ/Otf9ep1nvruKQq9hRw1OtwBvHgEWSvf4v4z3ua9De8Bzpd35Mve1va2+9htWmNpi5UNK3lz3Zs8t/I5AAxlsFvxbowoGEHA38run9WwfHwOhc0hDrvrY7ZUeGnPcVFw5JFcVjaaAk9Bhz+LSA1TbO2SouP+2G2dPWf77U2BJj6s/pDnVj7HY8sf69V1izeFIsuVhdfljd57XV68hvPY4/KQ78nHm+2Nvofv6r+jIdCAS7nwGB48hqfDcRpNe6idYChIu9VOIBSIBqzInyM4f0Zew4vH5eGcSedw+ezL8Rg7rlsWbxKAhBgg7BT2AepUwxoYPxfOfDTVJdlRbhm8+weoWQaVk50w8+EdzszGh/2668U94yh7j8kM+dOfyD/owKS8Xrwoj4f8A+eQf+ActL+dppdfZtCVV3QrfL9X9R43fnojTYEm/JYfS1ucO/lcst3hTvPFo6B1M8Ozyzl70tm9Kl/IDrGycSXtVjsTSieQ43aWoWh+8002+j7iiCv/Qs60aVRddDHuzz+n5Ec/4jeH/KZXr9VbP5r0I9qtdpbWLqU91B7d3lmQioYp1fX+DsEtZlukiTA20ESCSiTcuJU76SE8EmANFf9lLrpDApAQA4RO4DxAPWbb0LDWmfU3He31E1j4v/DhnXDS32D9R7DxM2eNqiSFH3C+nIpPOjFpr5cIRaecTPO//kXrO+90mNm6+V//ovG558Fwas48lYP54rgJXPvtTexWvBsHjziYHHcOeZ48Thl3SswJR4RPsBHKerd8g8twMbF0x+bI5pdewlVeTt5++6Hcbkbefx8Njz3W7TWp4i3bnc3eQxLfyTxdRcJZqkgAEmKAiPQBMtKhD1DrZmc18NL0WhMpKrcUZpwDix+Ew3/jBKGcUpj2o1SXrN/J23df3EOH0Pjsc9EAZFZXU33NtbjKSnGXlYNt0/Lhvyl/KcQ5p4/nojMfIt+7k8U3i8MBqHFdrwNQZ6yGBloWvEfp2WdH5+8xcnKSOteRSC8SgIQYIFI5DH4H9eGpG0rSNAAB7PtzWHQf/OtK+O5fcPDV4M1NdanSRkuwhcb2xujjQChArb+WWn8tW3xbqPU5P2/1b2X/PWwOemshP334RKgs59RH1jPctvjw2rl866llddNq2lbBNW8U8cN/rKB+3f/QNrbzcFN0yGyyARqr4vp+ml99FUyTohOOj+t5Rf8lASgFDjnkEK655hqOOmrbrK+33347K1as4K9//WsKSyb6s7TqA9QQDkDpWgMETtkmHQ/LXnA6SO/1s1SXqE+01ry57k1GF43u9QSCj337GO9Wvcv3jd+zxb+ly+cWeAoozy2nPKecNQeM5uA3azhgqcny0bWM+rSKpw9QPLPxEYblD2O34t2YfsQxHPCf59D8j0eou+9+fIt2nNBOt7cTXLuGEYNdzsSRcdT84ktkjR+f8LXWRP8hASgFzjrrLJ544okOAeiJJ57g5ptvTmGpeseyLNwyHXxa2NYHKA2awOrXODMhR/pzpKsDLnUC0LQzIb8i1aXZqXfWv8ONn97InGFz+OHYHzJj0IwOHUd9po/fffQ7/rXmX5TnlPPs8c9Sml3ao9d4cdWL/OnTP7F78e7sO3RfxhaNpSK3ItpHw2N4KM8pZ1DuIMpzysn1dKwtW/fq+Ry4pJpD1uRiVVZy5e0vcFVO9rbOzWFlP/0pZT/9aadlqP7lNbS+/z563BBU4/pOn9MbgTVr8H/5JYOuvDLtRtuJ1ElN1+sMd+qpp/LKK68QCP/GvnbtWqqrq3nssceYPXs2e+yxB9ddd130+aNHj+a6665j5syZTJkyheXLlwPOel4//vGPmTJlClOnTuXZZ58F4PHHH2fKlCnsueeeXH311dHz5Odva3N/5plnOP/882lqamL06NHY4RW5fT4fI0aMwDRNVq9ezdy5c5k1axYHHnhg9HXPP/98Lr/8cg499NAO5xepta0PUJrUABWPAFfih7L2ybBZcPazcMT/S3VJuvRN3TdsatvEy6tf5vzXzmfus3O57sPreOX7V/hiyxf86J8/4rW1r3H2pLNpDjTzm3//hp5Mcvtd/Xf8/uPfs9fgvXj6uKe5Yc4N/GTKTzh+t+M5brfjOG6345g7Zi6zB89mZOHIHcIPQPEpJ2NWVdH+9dfOJIMFxTuEn13JmT6dUH09JkPj2gTW/PIroBSFx3ZvkkqRGTL+V/c/f/pnltcvj+s5J5ZO5Oq9dx4MysrK2HvvvXnttdc44YQTeOKJJzjjjDO45pprKC0tJRQKcfjhh7N06VKmhidHKy8v5/PPP+evf/0rt9xyC/fddx+///3vKSoq4quvvgKgoaGB6upqrr76aj777DNKSko48sgjeeGFFzjxxBM7LUtRURHTpk3jvffe49BDD+Xll1/mqKOOwuPxcOGFFzJ//nzGjRvHJ598ws9//nPeeecdAFasWMFbb72Fy5W8ETOia9EmsHSpAUrn/j+xxqXpSLUYfstPrjuXd09/l7fXv82b697sMNdNSVYJ838wn/2G7seIghHc+OmNPLb8sW4NI28ONvPfC/6bIm8RNx10E26jd18LBUccgVHwB7LGju110MiZMQMAf0MeXrWqV+fYntaa5tdeI3fvvfFUZuBCvGKnMj4ApUqkGSwSgB544AGeeuop7r33XizLYtOmTSxbtiwagE4++WQAZs2axXPPOR96b731Fk888UT0nCUlJbz//vsccsghVFQ41flnn30277///k4DEMAZZ5zBk08+yaGHHsoTTzzBz3/+c1pbW/nwww857bTTos+L1FgBnHbaaRJ+0owOBMHtTo8VqhvWwB4npboUA4bP9JHrySXXkxutkQnZIVY0rODb+m85YOgBVOZVAvCjiT/io+qPuHXxrUwum8yIghEdJg2MzNpb46thc9tmXlr9EptaN/HA3AcozynvdRmNnBxGP/YortLSXjczZe2+G0ZeHr7NNkXujRAy+1yLGFixkuD331M679w+nUcMPGnwSZlaXdXUJNKJJ57I5Zdfzueff47f76ekpIRbbrmFRYsWUVJSwvnnn097+7bJsbLCzRoulwvLsgDnN5vtP2i6qvaOfW7suY8//niuueYa6uvr+eyzzzjssMNoa2ujuLiYJUuWdHquvLy8Hr9nkVg6EOjzukxx4W8Ef0P/qQHqByI1QLFchotJZZOYVNZxzT2lFL8/4Pec8tIpzHt13i7PbSiDa/e+lhmDZvS5nFnjxvXpeOVykTNtGv71q2CYDc3VUDKqT+dsfu1VMAwKjjiiT+cRA0+3ApBS6gVgDGADrcAlWuslSqnxwENAGVAHzNNarwwfk9R9/U1+fj6HHHIIF1xwAWeddRbNzc3k5eVRVFRETU0Nr776KoccckiX5zjyyCO56667uP322wGnCWyfffbhsssuY+vWrZSUlPD4449zySWXAFBZWcm3337LhAkTeP755ykoKIiWZe+99+ayyy7j2GOPxeVyUVhYyJgxY3j66ac57bTT0FqzdOlSpqXJYo1iRzoYkBFgA5TP8kVnM+6OkuwSHjr6If698d/RztKRdZcMZeAyXFTkVDA4bzCD8wb36NyJljNjBls//ojQbIWrcX2fApDWmpZXXyN3n717vVaZGLi6WwN0nta6CUApdQLwADATmA/crbV+RCl1DnAPcFj4mGTv63fOOussTj75ZJ544gkmTpzIjBkz2GOPPRg7diwHHHDALo//9a9/zS9+8Qv23HNPXC4X1113HSeffDJ/+tOfOPTQQ9Fac8wxx3BCeJbTG2+8kWOPPZYRI0aw55570traGj3XGWecwWmnncaCBQui2x599FEuvvhi/vCHP2CaJmeeeaYEoDRmB9IkAPWHOYD6Gb/p77TjcVdGFIzgzIlnJqhEiZMzfTrYmvY6D3l9HAof+O47gmvXUvrjztc0E5lN9WSkAIBSah5wKXAMsAIo01qHlFIunFqZcTjLMSdtn9a6dmflnT17tl68uON8E99++y2TJk3ayREiHuQaJ9/GK67Ev3Qpu7/xemoL8sGt8Pb/g2s2QtZOZvsVPXL2P8+mwFvA/CPmp7ooCRdqbmbFPvtSvkcTFf95KRzS+24KW267nbr77mPcB+/jLu3ZtAAifSmlPtNaz+7rebrdB0gpdR9wJE4QmQuMADZqrUMA4VBSHd6ukryvQwBSSl0IXAgwcuTInl8VIfohHQikxzIY9Wsgb5CEnzjyWT4G5WbGCCZXYSFZu++Gv3El7GouIDsEVgDaG8FXD/56sJz5sLTWNL/0HHlTdsdd95nz63L0OAt8ddBW69wDuLzhmwcMj/Nz+TgYeygYA3TGmKaN8P5NTr+9WJ12YlfdeE4Xz99hdx+Pj4NuByCt9U8BlFLnAjcDyV06twe01vcC94JTA5Ti4giRFHYwkB4Lodavkf4/cRYZBZYpcqbPoPml1eiVb6KemudMqhkKQmsNtNRA2xYn+LDzj/f2eg/mpgrKhq+ER9/d+Yu5swHlnN/5/bqj0rHOLOEzzobsoj6/t7Tx7Svw0n+C2Q7F21cUbHddd2gp2sXX6i5blvpyfPy+0ns8Ckxr/bBS6l5gAzBMKeWKaZIaClThRLdk7hMi4+lAMD36ADWsgdEHproUA4rf8qdVR+VEy5k+ncannybYXkTWluVOMDHc6PxK2oKTaPp2CForlMsFhgvbBLs9RKjdRHm8uArzsRqawKii4JePQlFhxxdQhrMgbl4FeGNGtNo22KYThqwgfP8ufHovvH4NfHALnPsCDJma1GtB21bYssyprdleh1qUXdXQxDxetxA++zsMmQ6nPhDXRWeT4r/iUzu0ywCklMoHSrTWVeHHxwH1wBZgCXAW8Ej4/otIfxylVFL3CZHpdCCAyu5GAAr6YPEDTrNBZyYd3/sPebPdGbosNUBx5bN8OwyDH8iiEyJOupqsU08FwLdoEVv+8hf8iz/DVVaGq6gIQiG0DmHk5uLKL8ZTWYA2TUJNTdgBm+IzTse9Rw/GyRgGGFngzoIsYMqpzm3jZ/DkPPjH8TDvRRiS4MEgdavh/Vtg1VtObVci7H8JHPZbcKdBs3mKdKcGKA94WimVB4Rwws9xWmutlLoIeEgp9VugAYiddCLZ+4TIaDoYxFVYuIsnaXj5Uvjqaee34B322044+vknvVsbq3EdoGUEWByF7BCBUIAcT+bUAHnHjMZVVETD00/T9uGH+Jd8iVldjbuigsrf/oaSU09N7oznw2bB+a/AQ8fBQ8fDeS/1LAStfBMW3e/8+4qI1NAoA4pHQcUE5xeHr5+FLx51+iBNPgEGT4HKyc5zOvybjWkK2lWT0/b7vXlQOKT75R+gdhmAtNY1wL472bcc2Ccd9gmR6bo1D9An9zjh57Bfw0FX7rh/y7dwz0Hwz/+G0x/uRkfF7USGwEsNUNz4LT9ARtUAKaXI3X8/Wl59Dau2lpyp0yj96U8oPukkjJwUBcHSMU4I+vtxcP9RTvMZgMsN+1wEe1/Y+b+Xb16AZ38C+ZXbjokNLyELvl8Api98Pi/s/TOYczkUVCbwDYmMnwk6lTZs2MAvfvELli1bhm3bHHvssdx8880sW7aM6upqjjnmGAAWLFiA1+tl//33T3GJRTqzd9UHaO2/4Y1fwYQfwpz/6fw5gybBob+Ct66Dr56Bqad1/rydiUyCKDVAceOznC/GTOoDBDD0T3/C/vWv02sCw5LRTgj68A4wnWBK/Rp49SpY9Tac+FfIi1lO5Ktn4LkLYfhecPbTkL2TGlrbhqYqqFsJFZOgaFjC34qQAJQyWmtOPvlkLr74Yl588UVCoRAXXnghv/rVr9hjjz1YvHhxhwCUn58vASjTBH1Q87VTba610zmzvSl8a+5YnY5Gt9ShGlfBh3d2Pmrjw7ucD/CT/tb1sN79L4Hl/4R/XQFjDoSCwd0vc/0a8OZ3/BIQfeIL1wxk0igwACM7GyO7Z6vJJ0XJKPjhrdsea+10lH7jN/C3/WHyic520wdLHoWR+8GPnup6WgjDcM7bx2U/RM9IAEqRd955h+zsbH4cnqHU5XJx2223MWrUKDweD1prFi5cyFlnncX8+fNxuVw88sgj3HnnnTQ2NvKHP/yBYDBIWVkZjz76KJWVlUyZMoUPPviAoqIiysvLue2225g3bx7nnnsu5513HrvvvjvnnnsubW1tANx1110SqtLZG7+Gxfd3++m6rRJj82J44+3On5BbBmc8uuuhvIYLTvwbzJ8D/zgRdj8cBk12hgNHVgqPVvXHVPkrnMBWMqbnTWdipyJNYJlWA9RvKAX7/AeMOgBe/AUsjSxQrWDCMXDyvR1Hmom0kfEBaPMf/0jg2+VxPWfWpIkMvvbaLp/zzTffMGvWrA7bCgsLGT16ND/+8Y9ZsWIFd911FwB+v5/8/HyuuOIKwFnz6+OPP0YpxX333cdNN93ErbfeygEHHMC///1vRo0axdixY/nggw+YN28eH3/8MX/7298wDIM333yT7OxsVq5cyVlnncX2s2SLNFK3yqkOn/tH57HhdsJLdjFkFWwLI2H2i4eg9psH/3NZzNaYIOLO6v7K2uW7OzVFC2+DRfeB1b7rYyL2PKX7zxW7FGkCy6Q+QP3S4D3hP95LdSlED2R8AEqVzlZy72p7rA0bNnDGGWewadMmgsEgY8Y4/S0OPPBA3n//fUaNGsXFF1/Mvffey8aNGyktLSU/P5+mpib+8z//kyVLluByuVixYkVC3puIk+ZqqNwDduveMF4dDKJy851wFA97nOTc7JDTtNW4Ntx3M9y8Fm1m0x1/Hr5XfF5fAJnbBCZEomV8ANpVTU2i7LHHHjz77LMdtjU3N1NVVYXL5ery2EsuuYTLL7+c448/ngULFnD99dcDcNBBB3H33Xezfv16brjhBp5//nmeeeYZDjzQmZTutttuo7Kyki+//BLbtslOx/Z14dDaCUDjjuze0y0LQiGMREyEaLicGqHy3eN/brFL0gQmRGIM0AVO0t/hhx+Oz+fjH//4BwChUIj/+Z//4fzzz6eyspKWlpbocwsKCjo8bmpqYtgwZ5TAQw89FN0+YsQItm7dysqVKxk7dixz5szhlltuiQagpqYmhgwZgmEYPPzww4RCnUz7LtJDexOYbVA4tFtP14EAQHoshSHiSprAhEgMCUApopTi+eef5+mnn2bcuHGMHz+e7Oxs/vjHP3LooYeybNkypk+fzpNPPslxxx3H888/z/Tp0/nggw+4/vrrOe200zjwwAMpL+842mafffZh/PjxgNMktnHjRubMmQPAz3/+cx566CH23XdfVqxYQV6edMxLW83Vzn03A5AddBaATIulMERcSROYEImR8U1gqTRixAhefvnlHbZnZWWxaNGiDtuWLl3a4fEJJ5zQ6Tkffvjh6M/7778/tr1tqPS4ceM6nOdPf/pTr8otkiAagLo3H0i0BigdVoMXcSVNYEIkhtQACZGOmsMLH/awCSwhfYBESvksHwpFtkv67AkRTxKAhEhHzRsB1e1JCG3pAzRg+UwfuZ7cXY4OFUL0TMYGIL2rxeNEr8m1jYPmjc7aQd2ct0cHIn2ApAlsoPFbfmn+EiIBMjIAZWdnU1dXJ1/UCaC1pq6uTobY91Vzdbebv8BZCBWkCWwg8lk+GQEmRAJkZCfo4cOHs2HDBmpra1NdlAEpOzub4cOHp7oY/VtzNZR1f96dbZ2gJQANNH7TLyPAhEiAjAxAHo8nOnuyEGmpuRrGHNztp0sfoIFLmsCESIyMbAITIq21N0OguWdNYNIHaMCSJjAhEkMCkBDppmWTc9/NOYBA+gANZJFRYEKI+JIAJES66eEcQBDTBCYBaMCRJjAhEkMCkBDppofLYEBsE5gEoIHGZ/kkAAmRABKAhEg3kQBUMKTbh0RHgXmkD9BAI01gQiSGBCAh0k3zRsgtB0/351La1gdIAtBAYtkWQTsoNUBCJIAEICHSTQ8nQYRwHyDDAHdGzmwxYEUWQpVRYELEnwQgIdJNc3WPRoCB0wdIZWXJelEDjM/0AUgTmBAJIAFIiHTTvLHHNUA6EMDwSvNXMpghk+dXPk/IDiX8tSI1QNIEJkT8SQASIp0EfeBv6HkAMoMyAixJXvn+FX774W/5fMvnCX8tnxWuAZImMCHiTgKQEOkkMgliUc/WUrMDAQlASfLO+ncAaA40J/y1pAlMiMSRACREOunFJIgQ6QMkTWCJ5jN9fFj9IQAtZkvCX0+awIRIHAlAQqST6CSIPe0EHcCQhVATbuHGhQRtZ9LJ1mBrwl9PmsCESBwJQEKkk6YNzn0PJkEEZx4gaQJLvLfXv01RVhGQnBogaQITInEkAAmRTpqrIacEvD37wrMD0gk60cyQyQcbPuDQEYeS486hJShNYEL0ZxKAhEgnvZgDCJwmMOkDlFifbv6UFrOFw0ceToGnQJrAhOjnJAAJkU5aqnvc/AXSBygZ3l7/NjnuHPYbuh/53nxazSQEINOHoQyyXPJnK0S8SQASIp201UFeRY8Ps6UPUELZ2ubdqneZM2wOWa4sCrwFNAcTPwzeb/nJcefIDN9CJIAsHCREOvHVQW5pjw+TYfA7FwwFaQ42Y9kW5TnluA3nY8+0TVY2rGRZ3bJoXxsAr+El15NLricXj+EhEApQ1VLFVv9WDh95OAD53nwa2xsTXna/5ZfmLyESRAKQEOnC9IPldzpB95AOBDD6aQ1Qa7CVGl8Nm9s2U+OriY58AmgJtlDVUsWG1g1s8W1Ba42NjdbauaGxtY1GA0R/trUNGoJ2kEAoED2fS7kYnDeY4qxiVjeupj3U3u1y5nnyOGj4QQAUeArY0LIhTldg53yWT0aACZEgEoCESBe+euc+t6zHh+pAABWHPkDvrH+HRZsXodkWMCL3wLZt4e1Al8+1sbFtm5AORW+2tgmGgtT6aqnx1XTZl0ahqMyrZETBCKYPmo5LuVAoDGWglEKhoveGclr0DWVEt3sNL4VZhRR4CjAMg02tm9jYupH69npOHX8qUyumsmf5ntGh7VprTNukzWzDZ/qwbIssdxZZrixKs0sp8BYAUOAtSM4oMNMvI8CESBAJQEKkC38kAPW8CcwOxmcY/F8+/wvrm9c7X7qKDgEj8jPsuH1nz1UoXIYLl3JhKCN67zE8jCocxT5D9mFw3mAG5w2mMreSwXmDyfPkRcuT487B60p+0155TnmX+/O9+UkJQD7LJ01gQiSIBCAh0kWkBiinZwFIWxZYVlz6AJm2yZGjj+TPB/25z+cayAo8BZi2SSAUSOgILb/lpzCrMGHnFyKTySgwIdKFr86572ENkA46SzPEow+QZVvRTsJi5yJNYYmuBfKZUgMkRKJIABIiXfh7VwNkB5xOvvHoA2TZFh7D0+fzDHT53nwgCQHI8kkfICESRAKQEOnC1+Dc97IGKB5NYJZt4VKuPp9noCvwODVAiZ4NWobBC5E4EoCESBf+evDmg7tnNTk6XAMkTWDJE60BSvCCqD7TR45HaoCESAQJQEKkC19dj5u/YFsAiscoMEtLAOqOZPQBsmyLoB2UGiAhEkQCkBDpwlcPuT2fBNEOhJvA4tAHyLRNCUDdkIwmMFkJXojE2mUAUkqVKaX+pZT6Tim1VCn1nFKqIrxvrVJquVJqSfh2VMxx45VSHymlVoTvxyVynxD9nr++dzVAwUgNUN/6AGmtpQmsmyJNYIlcEDUyI7bMBC1EYnSnBkgDN2mtJ2itpwKrgRtj9p+qtZ4evr0es30+cLfWejxwN3BPgvcJ0b/56ns9CzSA4e1bAArpEIAEoG7I8+ShUAldENVnhQOQNIEJkRC7DEBa63qt9YKYTR8Do7o6Rik1CJgJPB7e9DgwUylVkYh9u3oPQvQL/vrezQIdpz5AkQAkw+B3zVAG+Z58aQIToh/r0a96SikDuBh4KWbzo8qZH38hcK3WuhEYAWzU2vlE1VqHlFLV4e0qAftqtyvnhcCFACNHjuzJWxQiNUIWtDf1shN0ZBh83wKQZVsAuJXUAHVHvjdfmsCE6Md62gn6TqAVuCv8+ECt9TRgL5yActfODkwmrfW9WuvZWuvZFRVSQST6AX/v5gCCmD5AfWwCiwYgaQLrlgJvgTSBCdGPdfuTTil1CzAOOE5rbQNoravC9wGl1F/ZVjNUBQxTSrnCNTUuYGh4u0rAPiH6N3/fVoKHvs8DZNomAC5DJkLsDmkCE6J/61YNkFLqBmAWcKLWOhDelqeUKgr/rIAzgSUAWust4Z/PCp/iLOALrXVtIvb1+F0LkW6iC6H2Yhh8MM5NYFID1C0F3gJpAhOiH9vlJ51Sag/gWmAF8KGTdVgD/A/wbLgmxgUsA34ec+hFwENKqd8CDcC8BO8Tov+K1gBJH6D+It+bz6rGVQk7vzSBCZFYu/yk01p/g9P81JkZXRy3HNgnWfuE6NciK8H3YSbovg6DlxqgninwFCR0JmhpAhMisWQmaCHSga8PNUDBACgFnr4NX48EIBkG3z0F3gLazDa01gk5v8/0YSiDLFffZ/gWQuxIApAQ6cBfDy6vsxhqD9mBACori3DzdK9ZWmqAeiLfm09Ih6I1NfHgM320W+3AtpXg+/rnKoTonHzSCZEOfOFlMHrxZacDwbgshBqyZSbonogsiNocbI5bR+XzXjuP6tZqTp9wOhtbN0rzlxAJJJ90QqQDf0Ovmr/A6QPU1/4/sG0YvASg7umwIGpe389nhkxWNKxgUO4g7v/qfjSaUYVdTrovhOgD+aQTIh346nrVARqcPkDxqAGSTtA9E+8FUTe2bsTWNpfMuIQZFTN4/LvHGZo3NC7nFkLsSD7phEgHvnqoGN+rQ+04NYFF+wDJMPhuiW0Ci4eqFmdO1xEFIxhROIKr9roqLucVQnROOkELkQ78vVsJHpwmMJXV9yYwqQHqmQ5NYHGwvmU94AQgIUTiSQASItW0dvoA9bYJLBDA8EoTWLLFuwlsQ8sGctw5lGX3LggLIXpGApAQqRZoBtvqdSdoW/oApUSkCSxekyGub1nPyIKRMuxdiCSRACREqvVhFmiIDIOPYxOY9AHqlmxXNm7ljlsAqmqpkuYvIZJIApAQqeZrcO77Mgw+DjVAMgy+Z5RS5Hvz49IEFrJDbGjZwIhCCUBCJIsEICFSLboQah86QcehD1BIy0SIPZXvyY9LDVCNrwbTNqUGSIgkkgAkRKpF1gHrZROYHYzTMHjpA9RjBd74LIgaGQI/smBkn88lhOgeCUBCpJq/9wuhggyDT6UCb0FcmsBkCLwQyScBSIhU89UBCrKLenV4vIfBy2rw3RevJrCqlio8hofK3Mo4lEoI0R0SgIRINV895BSD4erV4fFuAnOp3pUjE8WtCay5imH5w3D18u+AEKLnpK5biFTbySzQbR99RMubb6KtENoOQchGhywI2aDtbU80zfg0gWlpAuupeDWBVbVUMbJQ+v8IkUzySSdEqvnqd+gAXf/wI9T86U8YOTmonByUywUuA2WE75UB4QnzvLvvRu6sWX0uhgyD77l8bz5tZhshO9Tr2hutNetb1rPX4L3iXDohRFfkk06IVPPXQ+EwAHQoRM2fbqThkUfIP/xwht18E0ZublKKIU1gPRdZD6zNaqPQW9irc9S11+G3/AwvGB7PogkhdkECkBApoG2b9m+/pe2DhbQ9VUeIADx+PKG2VqzqTZSefz6DrrzCqflJEsu2cBtuWYqhB2KXw+htAJIh8EKkhgQgIZKsfdkyqn72Y6y6ZgCySiw8w/JRQ0aBy03+pZdSfOKJSS9XyA7JCLAeii6I2ocV4SMBSIbAC5FcEoCESCKroYENF/0UfA0M3aeZvCEB3Nk2HHstzP5xasumLVkHrIfyPU4A6stIsPXN6zGUwbD8YfEqlhCiG+TTTogk0ZbFxssvx6prZNQPFTnXLgJlOMPf81M//0ukCUx0X6TZqy8BqKqliiF5Q/C4pPZNiGSSTzshkmTLrf+L76OPGbJPMzk/uACK06vJQwJQz0WbwMxWtNZoNLa20VpjYxOyQ9FtHsNDtjt7h3PIKvBCpIZ82gmRANq2qb3zTlpefQ1tWWjLwtq8mZLDplA86HWY/qNUF3EHpm3KRHw9FKkBunbhtVy78NpdPr8ip4KRhSMZVTiKkQXO/brmdRw1+qhEF1UIsR0JQELEme3zsfGqq2h9623y9t8fd0U5uN14Bg+h3Hgc3NNh0KRUF3MHli19gHqqJLuE3+73W2raajCUgVIKAwOX4UKhMJThbEfRHmpnffN61resZ0HVAurb66PnGVM0JnVvQogMJZ92QsSRuWkTG/7zEtqXLaPy2msoOffcbcPKN38N838FR9+c2kLuhDSB9c5p40/r1XGtwVbWt6ynpq2GfYbsE+dSCSF2RT7txIBk+3w0Pv88/iVfgtYJfjEbc/NmgmvXEqqvR+XmMvzuuyk47NCOz/vycTA8MOXUxJanlyQAJVe+N5/JZZOZXDY51UURIiPJp53oF8xNm6i77368Y8eQM3Ua2RPGo7zb1r/SWmO3tGBtraP5lVdoePRRQk1NuIcMQXkTP7rGM6iSgsMPwzt6NPmHHkrW2LEdnxAyYelTMP4oyC3t/CQpZmlL5gESQmQMCUCiX2h97z0aHn102wa3GyMrCwwDZRiE2trAsqK78w8/nLKfXEDuzJkpKG0nVr8LbVvSsvNzRMgOSQ2QECJjyKed6Bd0IADAmOefI7h2Le3fLkcH2tG2hlAIIz8fV2kJ7pISsqdMJWtsmnUqrfnauR97SEqL0RVpAhNCZBL5tBP9gh0MAuAdPZrsSZMoPProFJeoh9pqwZsP3rxUl2SnTNuUACSEyBhGqgsgRHfocACK7ffTr7TWQP6gVJeiS7IUhhAik0gAEv2CDprgciV1dfS4at0CeWkegKQJTAiRQSQAiX5BB4P9t/YHnCaw/IpUl6JLlm3JTNBCiIwhAUj0C/0+ALXWpMWCp12xbBkGL4TIHBKARL/gBKB++uVsBcHf0D+awKQPkBAiQ0gAEv2CDgYxPP20Bqit1rnvB01g0gdICJEpJACJfkGbZv9tAmvb4tynexOYlgAkhMgcEoBEv6DNftwHqDVcA9QfmsAkAAkhMoQEINEv2P25E3RrjXMvTWBCCJE2JACJfqFfjwKLNIFJDZAQQqQNCUCiX9DBftwHqLUWvAXgzU11SbokAUgIkUl2GYCUUmVKqX8ppb5TSi1VSj2nlKoI7xuvlPpIKbUifD8u5rik7hMDW78eBt8PlsEAWQpDCJFZulMDpIGbtNYTtNZTgdXAjeF984G7tdbjgbuBe2KOS/Y+MYD17yaw2rQPQLa2sbUtNUBCiIyxywCkta7XWi+I2fQxMEopNQiYCTwe3v44MFMpVZHsfT1+16Lf0cEgRn8NQK01kJfef00t2wKQACSEyBg96gOklDKAi4GXgBHARq11CCB8Xx3enux925fzQqXUYqXU4tra2p68RZGmdDCI8vTXJrAt6T8HkAQgIUSG6Wkn6DuBVuCuBJQlbrTW92qtZ2utZ1dUpPdv3qJ7+m0TmBWA9sa0bwKzdDgASR8gIUSG6PannVLqFmAccJzW2lZKVQHDlFIurXVIKeUChgJVgEryPjHAOTVA/TAARZbBkCYwIYRIK92qAVJK3QDMAk7UWgcAtNZbgCXAWeGnnQV8obWuTfa+Hr5n0Q/Z/XUpjNZ+sgyGBCAhRIbZ5aedUmoP4FpgBfChUgpgjdb6JOAi4CGl1G+BBmBezKHJ3icGsH7bBBYNQGneBBYOQB6jn/azEkKIHtplANJaf4PT/NTZvuXAPumwTwxc2rbBsvpnAGrrXwFIaoCEEJlCZoIWaU8HgwD9MwC19p9lMABcypXikgghRHJIABJpb1sA6ofNM61bIKsQPNmpLkmXTNsEpAZICJE5JACJtNeva4DatqR98xfEDIOXACSEyBASgETaiwSgfjkTdGtt2jd/gfQBEkJkHglAIu316xqg1hrIT+85gABCdgiQACSEyBwSgETas/tzAGpL/2UwQIbBCyEyjwQgkfZ00Omg2+8CkNkO7U3SBCaEEGlIApBIe9EmsP62FEZkGYz+1Ala1gITQmQICUAi7fXbPkD9ZBJEkGHwQojMIwFIpD1t9tN5gPrJJIggTWBCiMwjAUikPW320z5A/WQdMIiZCdqQmaCFEJlBApBIe/12HqBIE1he+g+Dj44CU/2slk0IIXpJApBIe/22D1DjesgqSvtlMECawIQQmUcCkEh7/TIArXwTvngEdj881SXplpCWiRCFEJlFApBIe9GJED39pHlm81fw9PlQuSccf2eqS9MtMgpMCJFp5NNOpL20rwEKmWD6wXBB21Z49HTILoIfPQVZ+akuXbdIE5gQItPIp51Ie2k9E3TzJvi/w6Clets2bwFc8BoUDklduXpIApAQItPIp51Ie2lbA6Q1/PNy8NfDD64HFNgWjDsCBu+Z6tL1iAQgIUSmkU87kfZ0MAhuN8pIsy5rXz8L3/0Ljvg9HHBpqkvTJ7IUhhAi06TZN4oQO9LBYPrV/rRthVevgqEzYd+fp7o0fWbZFi7lQimV6qIIIURSyK97Iu3pYBAjkSPA2rY6t55470Zob4YT7gZX//9nZNmWNH8JITKKfOKJtKfNBNYAWQG4YyYEmnp+7CHXQOXk+JcpBSQACSEyjXziibSX0CawrSuc8LP/JU5zVndlFcJuhyWmTCkgAUgIkWnkE0+kPTuRAajmG+d+xrlQMSExr9EPWNqSDtBCiIwinaBF2tNBM4EB6GtwZUHpbok5fz8hNUBCiEwjAUikvYQ2gdV8A4MmDoiOzH0hAUgIkWkkAIm0l/AAVNm/Ji1MBMu28Bj9ZK01IYSIAwlAIu05ASgBX86ttdBaA5V7xP/c/YzUAAkhMo0EIJH2ElYDtCXcAVoCUHQiRCGEyBQSgETa08EgRiICUGQEmDSBYWpTaoCEEBlFApBIezoYRHkSFIDyKyGvPP7n7mekCUwIkWkkAIm0ZydqJujNX0ntT1jIDkkAEkJkFAlAIq00vfwyLe+802FbQuYBCllQu1z6/4RJDZAQItPIJ55IK3UPPoi7uJiCw7YtM6HNBASgulUQCkoNUJhlW+QZeakuhhBCJI3UAIn0YpqE2to6bHL6AMV5GHzN18691AABzlIYHiXzAAkhMofUAIm0ooMm2u4kAMW7BqjmGzDcUD4+vuftp6QJTAiRaeQTT6QVbVnoQGDb41AIQqH4T4RY8w2UTwB3gmaY7mckAAkhMo00gYm0ok0TO6YJTAeDAImpAZLmryjTlnmAhBCZRQKQSCvasrDb2tBaO4/DASiuEyH6G6B5gwSgGDITtBAi00gAEmlFmybYNtrvdx4nogZodXiY/dDp8TtnPydNYEKITCMBSKQVbZoA0WawhASgj/8GJWNg9EHxO2c/F9IyEaIQIrNIABJpRVsWsC0A2fEOQFWLYMMi2PdiMOSvf4RlW3gMGQYvhMgc8g0g0oa2bQgHoFC0BsipEYrbWmCf/A2yimD62fE53wAhTWBCiEyzywCklLpFKbVGKaWVUnvGbF+rlFqulFoSvh0Vs2+8UuojpdSK8P24RO4TA0Ok9gfAbk1AE1jTRvjmBZh5LmTl9/18A4gEICFEpulODdALwEHAuk72naq1nh6+vR6zfT5wt9Z6PHA3cE+C94mBINz/B2L6AJlxDECf3gto2PvCvp9rANFaY2kJQEKIzLLLAKS1Xqi1ruruCZVSg4CZwOPhTY8DM5VSFYnY191yifSnOwtA0RqgPvZPCbbBZ3+HicdCyai+nWuAsbRT8+ZWEoCEEJmjr594jyqlFLAQuFZr3QiMADZqrUMAWuuQUqo6vF0lYF/t9oVSSl0IXAgwcuTIPr5FkSxdBaA+zwO07CVob3Q6P4sOLDscgKQGSAiRQfrSCfpArfU0YC+cgHJXfIrUd1rre7XWs7XWsysqpJKov+jQB6it1dkWrz5AVR9DdhGM3K9v5xmAJAAJITJRrz/xIs1iWuuAUuqvwEvhXVXAMKWUK1xT4wKGhrerBOwTA0TXTWB9DEAbP4OhM0Gpvp1nAJIAJITIRL2qAVJK5SmlisI/K+BMYAmA1npL+Oezwk8/C/hCa12biH29Kb9IT50FoLjMA2T6oWYZDJvZp/INVCGnZVn6AAkhMsouP/GUUncAJwODgbeUUnXAccCz4ZoYF7AM+HnMYRcBDymlfgs0APMSvE8MALFNYKF41gBt/gp0yKkBEjuQGiAhRCba5See1vpS4NJOds3o4pjlwD7J2icGhsikhxA7D1B4IsS+BKCNnzn3w2b1/hwDmGk711gCkBAik8hM0CJtaCtBfYA2fg4FQ6BwSJ/KN1BJDZAQIhNJABJpI9oHyDDiG4CqP5fmry5IABJCZCIJQCJtRAKQq6hoxwDk7uWXs78R6lZJB+guSAASQmQiCUAifYQ7QbuKi7Fbw/MAmUHweFC9Xbm9+gvnXgLQTkUCkKwGL4TIJBKARNrYWQ2Q4enDF3P158790J322c94kaUwXMqV4pIIIUTySAASaSMagIqLYxZDNfveAbp0N8gpiUcRByRpAhNCZCIJQCJt6JgmMG2a2MEgdjDY9wAkzV9dkgAkhMhEEoBE2ojM+eMqLgacofC6LwGoeRO0VMv8P7sgAUgIkYkkAIm0EdsEBpEA1IcmsGj/H6kB6ooEICFEJpIAJNJGbBMYxKEGaP1HoFwweEqcSjgwRTpBy1pgQohMIgFIpI3Oa4B6GYA2fAYfz4eJx4A3N46lHHhkGLwQIhNJABJpY4cA1NoaDkA9/GL21cPT5znLXxx3R5xLOfBIE5gQIhPJJ55IG5G1wFzFRcC2GiAjN6f7J7FteP4/oLUGLngdcksTUdQBRQKQECITySeeSBvaNMEwcBUWAjFNYEVFXR8YaIWtK2DrSlj9Dqx8A354qwx/76bIavAyEaIQIpNIABLpw7JQbjdGXh4QDkBmTB8gXz201YKvDpqrYcMiWPch1HwN2naeo1ww+yfOTXSL1AAJITKRfOKJtKGDJsrjiQagUGvrtokQv3oGnt0u1LhzYPhsOOhKGDwVysdDyWhw92HixAwkAUgIkYnkE0+kDW06AUi53aisLOw237Z5gD7+q7OkxaHXOv168iqgfIKEnTgI6RAgo8CEEJlFApBIG9qywOP8lTTy87f1AbKaYeNncPRNMOXUFJdy4JEaICFEJpJh8CJtRGqAAIy8vG0BqGGl09w19YwUl3BgkgAkhMhEEoBE2tghAEXmAapfCXueAjnFqS3gAGXaJoYyMJR8HAghMod84om0oS0L5Y4EoNxwDVAARRBmX5Di0g1clrZkGQwhRMaRACTSRmwNkCsvn1BzM2gwiiplTp8EsmxLmr+EEBlHApBIG9oMotzhTtB5eYRqawBQo2aDUqks2oAmAUgIkYkkAIn0YVkd+gBZTU0AqJGzU1mqAU8CkBAiE0kAEmkjMhEigJHtgZAGQOUWpLJYA55lSx8gIUTmkQAk0oY2zW1NYG3ro9uVRyY7TKSQDkkNkBAi40gAEmlDxzaB1X8V3R5dC0wkhGmbEoCEEBlHApBIG9o0UV4P1H6H0bYuul0CUGJJHyAhRCaSACTShrYscLvh839geLaN+lJeWaMqkSQACSEykQQgkTaifYC+fALX6G3z/kgNUGJJABJCZCIJQCJtaNNE+WrAtxVjyjHR7YYEoISSACSEyEQSgETqWQFYuxDta0Rt+gzyB2OMOyi6W2qAEkuWwhBCZCL51BOppTXctRc0rkO3D0Zl5cNxN2DkFkWfIgEosSzbwmNIPyshRGaRGiCRWqEgNK6DmeehXXmo6WfAhLkYeXnRp0gASixpAhNCZCIJQCK1TJ9zP2iSsxRGzFpgERKAEksCkBAiE0kAEqll+gHQ7uwOq8Err9cZEo8EoESTPkBCiEwkAUikVjBcA2RkA6A84dCjFK5wLZAEoMSSGiAhRCaSACRSK9wEpg0n5ERqgGBbM5isBZZYEoCEEJlIApBIrUgTGOGmr04CkCEzQSeUBCAhRCaSACRSK1IDpLKcx+5tX8TRjtAeCUCJJMPghRCZSAKQSK2uaoDy81FeL0qpTg8V8SE1QEKITCQBSKRWpAYoGoC29fcx8vKkA3QSWLaFS7lSXQwhhEgqCUAitaJNYOHRX7FNYPl5qKyslBQrk1haaoCEEJlHPvVEanXRBFZ67rnkz5mTkmJlEmkCE0Jkol3WACmlblFKrVFKaaXUnjHbxyulPlJKrQjfj0vVPtGPRWqAtPNXUcWM+MqeOJHCo49OSbEyiQQgIUQm6k4T2AvAQcC67bbPB+7WWo8H7gbuSeE+0V9FJkKMBCC3fBEnU8gOodESgIQQGWeXn3pa64VAh5E4SqlBwEzgiPCmx4G7lFIVgErmPq11bQ/fs+jCy6tfZuHGheS4c8hx52AoA7/lx2f5yPfkc83e1+Ay4thh1vSBJxdtWUDHJjCRGD7Tx71L72V5/XLWNq8FIMslfa2EEJmlt7/2jQA2aq1DAFrrkFKqOrxdJXnfDgFIKXUhcCHAyJEje/kWM9MDXz/AxtaN5Hvy8Vt+QjpErjsXjaa+vZ5zJp3D6KLR8XtB0+8EINMEJAAlw+2f384Ty59gYulEppZP5YTdTuD43Y5PdbGEECKpBmS9t9b6XuBegNmzZ+sUF6df2erfyvG7Hc+v9/11h+3vb3ifX7z9C1qCLfF9wUgAitQASRNYQn2x5QueWP4EZ008i2v2uSbVxRFCiJTp7bdNFTBMKeUK18a4gKHh7SrJ+0ScmCGTxkAjZTllO+wr9BYC0BxsjvOLtoEnJ1oDJLM+J04gFOC6D69jcN5gLpt5WaqLI4QQKdWreYC01luAJcBZ4U1nAV9orWuTva835Redq2uvA6A8p3yHfQXeAiARAcjvBKBguAnMLQEoUe758h7WNK3huv2uI9eTm+riCCFESu2yBkgpdQdwMjAYeEspVae13gO4CHhIKfVboAGYF3NYsveJOKjzOwGoIqdih32RGqCEN4EluQbItE2eWfEM65vXO529TR+WtqL7vS4vg3IHUZlbSWl2KVprbGzMkMkW3xY2tW1ic9tmTNtEER4ooEBF/gsPHlDOxuh2cAYWRJ4zomAEk0onMblsMuU55Vi2RUiHaAm2sKFlAxtaN7DFtwXLtqL7LNvCtM3ozyE7vE2b0Z8NZZDrziXbnc1b697i+N2O54BhByT1GgshRDrqziiwS4FLO9m+HNhnJ8ckdZ+Ij1q/U6GW3BogH+SUbOsEncSV36uaq7j6g6v5autX5HnyyHPnkePJ6bAwqN/ys8W3BdM2Oz1HWXYZg/MGR0dRaTRaayL/hTd2ul1r597SFh9Xf0x7qL3L8rqVG4/Lg9tw4zE8uJQLt+HGbbg7/OxW4W2GC8u2qPHV4Lf8TK2YypWzr+zrZRNCiAFBepyKqK3+rUDnASjbnY3X8NIciHMACvqgcCjaDALJ6wT9z+//ye8//j0GBrccfAtHjT5qp8/VWtMQaKCxvREU0bBRnlMet+Hjlm2xpmkN39Z/S3OgGZfhwqVc5HnyGF4wnOH5wynNLpWFYYUQIk4kAImoSAAqy96xEzRAYVZhYmqAPLno9uQ1gX1e8zm//OCXzBg0gxsPvJGh+UO7fL5SitLsUkqzSxNWJrfhZlzJOMaVyATnQgiRDBKARNRW/1aKs4rxuDoPIQXegoR1gqYlefMAPfndkxR4CrjniHvIceck/PWEEEKkH1kNXkRt9W/ttPkrotBbmKBO0HlJmweosb2RN9e9yXG7HSfhRwghMpgEIBG11b+10zmAIgq9cW4C0zrcBJaTtJmgX1r9EqZtcsr4UxL6OkIIIdKbBCARtdW/tdMh8BEF3oL4doIOBUGHOswDRAJrgLTWPLPyGaZVTGN8yfiEvY4QQoj0JwFIAE44qPPX7boJzIxjE5gZXgk+Mg+Qx5PQUU6fb/mcNU1rOHX8qQl7DSGEEP2DBCABQKvZSnuovcsAVOAtoCXYgq3t+Lyo6Xfuvc5iqIlu/npmxTMUeAq6HPIuhBAiM8goMAHEDIHvog9QUVYRtrZpM9uiEyP2SSQAeRITgMyQyea2zVjawmf5eGPtG5w87mTp/CyEEEICkHBEAlBXfYBil8OISwAKtjn3nhy0ZcZlBFib2ca7Ve+yoGoBCzcupM1s67Bfmr+EEEKABCARFlkHbFdNYOAshzGUricP7JZoDVBOXGqAtNb87I2f8dXWryjPKWfu6LlMHzQdr+HFMAwqciqYUDqh7+UWQgjR70kAEkDX64BFRGqA4jYSLNoJOi8uAejzLZ/z1davuGL2FZw7+VwMJV3chBBCdE6+IQTgNIF5DE805HSmMCvOK8LH1ABhWX1uAnti+RMUeAs4fcLpEn6EEEJ0Sb4lBLBtFuiuhqHHfUX42GHwfawB2urfylvr3uLE3U+UTs5CCCF2SQKQANjlHEAQ0wQW9wDkTITYlxqgZ1Y8g6UtzphwRnzKJoQQYkCTACQApw9QV0PgAfI8eShUHANQzDB4y+p1DZBlWzy94mn2H7o/owpHxadsQgghBjQJQF14f8P7/PnTP6e6GEmxq2UwAAxlxHc5jEgNUB8nQlxQtYAtvi2cOeHM+JRLCCHEgCcBaCe01ty6+FYe+fYRGtobUl2chLJsi4b2hl02gUGcl8OI1AC5s8NLYfS8CaymrYa/f/N3huQN4aDhB8WnXEIIIQY8GQa/E4trFvN90/cAfLX1qwH95drQ3oBGdysAxbUGKNgGnlxQCm2aGPl53TrMZ/p4buVzvL72dZbULgHgV/v8Cpfhik+5hBBCDHgSgHbiqe+eosBTgM/y8WXtlwM6AEXmANpVHyBwhsLHtQ+Qxxmx5TSBebt+esjkmZXPMP/L+dS31zOxdCKXzLiEH4z6AWOLxsanTEIIITKCBKBObPVv5a31b3HmhDP5rOYzltYuTXWREqo7y2BEFHoLqfXVxueFTT94nFqfXS2FsWjzIq778DqqWqqYXTmbOw+7k6kVU+NTDiGEEBlHAlAnnl/5PJZtcfqE0zFtk1e+f4WQHRqwTSzdWQYjotAbzxogHzXebL5a9xYjA4FOO0FrrXl8+ePctOgmhhcM56+H/5U5w+Z0OV+REEIIsSsSgLYTskM8veJp9hm8D2OKxjCtYhpPfvcka5rWsHvJ7qkuXkJ0ZyX4iEJvYY/7ALVb7Xzf9D3rmtdR315Pnb+OGl8NS/xfsT7fhAX/zX2tLvK36wQdCAX4/Ue/58XVL3LI8EP444F/jM8irEIIITKeBKDtLNy4kE1tm7hi9hUA0WaWL2u/HLABqNZfS4G3gCxX1i6fW+AtIGgHCYQCXT6/JdjCg18/yJvr3mR9y3psbUf3GcqgJKuEKdrNGTqXxmmnY5l/Y4N/c3SJ1ZAd4vIFl/P+hve5aNpFXDztYlneQgghRNxIANrOC6teoDynnENHHgrAyIKRFGUVsXTrUk4Zf0qKS5cY3ZkDKCJ2QdSK3B2PCYQCPLH8Cf7vq/+jKdDEnGFzmDtmLrsX787YorGU55RTlFXkhJn/OwxySghN/wVL7Hv5tP5LJgabKfQW8pcv/sL7G97nV/v8ijMnyvw+Qggh4ksC0HY2tW1iYulEPIbTH0UpxdTyqQO6I3R3lsGIiCyI2hzcMQA1B5v5yes/YXn9cg4YegCXzbyMSWWTdn4y0w+FQ3EZLnLw0kaAOz6/g+mDpvPg1w9y+vjTJfwIIYRICAlA2/Fbfoa6h3bYNrViKgs3LqQl2DIg+6Bs9W9lj/I9uvXcyPvffkX4dqudS96+hFWNq7j90Ns5fOThuz5ZZB4gwAjZjK+YzK+/e4rnVz7P7MrZ/HLvX/bsjQghhBDdJAFoOz7LR647t8O2qRVT0Wi+3vo1+w3dL0Uli5/3N7zPjZ/eSJvZBjgTIR4y4pBuHdvZgqiWbXHl+1fyxZYvuOmgm7oXfmCHeYBmDdubitx6PIaHWw+5FY+r96vDCyGEEF2RALQdv+Unx53TYduU8ikoFEtrlyY1AC3avIhPNn3S6T7Ltqhuq6aquYqq1ioCVqDT5w3KHcS5k8/lxN1PxGN4uHvJ3fzfV//HuJJx7D90fwAUipPHndytMnUWgG745AYWVC3gmr2vYe6Yud1/g6bfWQg1FALbxpuVy5PHPonH8FCUVdT98wghhBA9JAFoOz7TR66nYw1QgbeAsUVjWbo1Of2Avtn6DX/5/C98tOkjwAko2zOUweC8wYwsGMlRo44iz9P5MhKfbfmMGz65gflfzmdYwTCW1i7l5HEnc83e15Dtzu5x2SJNYJGh8PXt9Tyz4hnOmngWP5r0o+6fSGtnMdTwSvAAyuPtdl8kIYQQoi8kAMUwbRPTNneoAQKnGezdqndZ2bAy+tx1zetY2bCSVY2r8Jk+dPg/W9torQG2PUbj/G/b48hzoo/RhOwQ3zd9T3FWMVfMvoIzJpzRq6ASobVmcc1i/m/p//HFli/43f6/63ZtT2e2rwH6csuXABw1+qienSgUBB0CTw7aNAF6vRq8EEII0VMSgGL4LWd18u37AAHMGDSD51c9z8kvdQwPLuViVOEoirKKojU1hjIwDAMV+U/t/N7AAEWH5x495mjOmXQO+d78Pr8npRR7Dd6LvQbvhWVbuI2+/ZF7XB5y3DnRTtBLapfgNtzsUda9TtRRpi98wtxtAaiLpTCEEEKIeJJvnBh+0wlAOZ4da4COHXssxVnFmLbzZW0ogxEFIxhTNAavq+tFPNNFX8NPRIG3IFoDtGTLEiaXTu55LVX4WksNkBBCiFSQABTDZzm1Ep3VAHlcnujkiJkushyGGTL5pu4bTp9wes9PEglA3jyQACSEECLJZG2BGF01gYltCr2FtJgtLK9fTiAUYHrF9J6fJNoElhPTCVryuBBCiOSQABTDF/5S7qwJTGwTqQFaUrsEgOmDpvf8JMGYACQ1QEIIIZJMAlCMrprAxDaFWYU0B5tZsmUJQ/OGMih3UM9P0lknaAlAQgghkkQCUIxIE1hnw+DFNpFO0Eu2LGHaoGm9O0m0E/S2eYCQUWBCCCGSRL5xYkSawLafCFF0VOgtpM1so81sY8agGb07SYcaoFZAaoCEEEIkj9QAxZAaoO6JXRC2Vx2goWMn6KA0gQkhhEguCUAxpA9Q90Rmg85x5zCuZFzvTtJJE5hySwASQgiRHBKAYvgtPwpFlisr1UVJa5EANLV8au8nV4zUAHlz0WYQkBogIYQQySMBKEZkIVSldlx8VGwTaQLrdQdo2FYD5M6OGQUmXdKEEEIkR58DkFJqrVJquVJqSfh2VHj7eKXUR0qpFeH7cTHHxH1fPPgtv/T/6YbRRaMpzS7lkOGH9P4kwTbw5IJSEJ0IUWqAhBBCJEe8aoBO1VpPD99eD2+bD9yttR4P3A3cE/P8ROzrM5/lk/4/3VCeU857Z7zHlIopvT+J6YfwhJMyD5AQQqSGL2jR0m7iC1q0myECVggrZGPbGq11qouXUAlpc1BKDQJmAkeENz0O3KWUqgBUvPdprWvjUW6pAUoi0+/UAEFMJ2hpAhNCiL7QWvNNdTPPfr6B72vbnG0x+wDMkM2WlgA1Te20BUNdns9QYCjl3IyYnxUYhur4WClchkJ19rPquN1QoLb/Ofyc7SWqV0q8vnEeVU7HmYXAtcAIYKPWOgSgtQ4pparD21UC9nUIQEqpC4ELAUaOHNntN+E3/TIHULKYvm0BSGqAhBCi11raTb7e2MwXVQ28tKSa5Ztb8LoMJg4piPZpjWQIpcBtKCYOLuDg8RUMKsjGbShsrbE1zr3t/BzSTi2QrTUhmw4/2+F9ofBxWmtC9o7nsMPH2HbMz+HtIVujY362bHuH97Z9JVQ866TiEYAO1FpXKaWygNuBu4Db4nDeXtNa3wvcCzB79uxuXy+f5eswx41IoNgmMJkHSAiRZkK2pslvYtm28+UcinxJO/eRm2XbmCGNGbIJhmxcSuF1G3hcBqDxBUP4giEC1rYv9501Ldlas77Oz7JNTSzb1Ex9axAVrhVROLUkkZoWt0vhNpxeLNVN/mhQmDq8iN+fsAfHTRtKca43wVcpNdTP43OePgcgrXVV+D6glPor8BJwOTBMKeUK19S4gKFAFc6fY7z3xYXf8lOZWxmv04muxNYARZfCkAAkhEit72tbeWrxBp79fAO1LYGkv75SMKYsj6nDixlcmI3WoHFqSrTWaIgGMtN2+uqMrRjB1OFFTB1eTGnewAw9idCnAKSUygPcWuumcBPYmcASrfUWpdQS4CzgkfD9F5G+OonYFw+RYfAiCUwfZBcDMU1gXglAQoj4+LKqkU/W1OEP2vjNENkeg/3GljFjZAled8fxP76gxb++2sxTi6r4dG09LkNx6IQK9t+tHK/bwGU4fVXc0Xujw+NIjY/bpdBaE7BsgpaNUopcr4scj4tsj8G2hqiO/Vpiu7hUFmaTlyX9IZOhr1e5Eng2XBvjApYBkcqpi4CHlFK/BRqAeTHHJWJfn0kn6CQy/VA4FIgJQNIJWgjRR0HL5ra3VjD/vdXRZiGvy8CybW5/ayV5XhczR5VQlOPB6zawQpp3lm+hNWAxpjyPq+ZO4NSZwxlUmJ3aNyISrk/fOFrr74FOV8PUWi8H9knWvniQYfBJ1KEJzASXC2XIvJxCiN5bWdPCZU8sYdmmZs6YPYKr5k6gKMeD22XQ3G7y0eo6PlhZyxfrG9nY4CdgOf17jtyjkjNmj2DvMaUyEW4GkV+5w0J2iEAoIDVAyRL0dZgHSDpACyH6oqa5nVPnf4TbUNx77iyO3GNwh/2F2R6O2mMwR223XWQuCUBhkZXgpQ9QksTOAyQBSAjRB1prrn52KQErxPOXHsjYivxUF0n0A9LmEBYJQFIDlARad2gCw7Kk/48QoteeWlzFgu9q+eXciRJ+RLdJAArzWc7q5BKAkiBkgg5JE5gQos82NPj4/Svfst/YMubtNzrVxRH9iPzaHRZtApNO0IlnOtOzR5vAgqbUAAkhooKWzZ3vrOTD1XXOMgk4MxU7kwpamCHN4KJsRpTksHJLK1prbjp1KoYhHZhF98m3TpjPDNcAeaQGKOFMJ2xGa4AsS2qAhBAAVNX7uOTxL1hS1cisUSV4XAa21riVQXGuh1yvG5eh2NTkZ/G6BrY0B7jhpD0ZUSq/vIqekQAUFmkCkxqgJIgGoJhO0DIJohAZrdEX5I1lNfzhlWVoDXf/aCY/nDpkl8dprWXouugVCUBh0gk6iVprnHtvHhBeCkOWwRAi44RszV/fXcXryzbzTXUzWjtrWd111kxGlnXvl1EJP6K3JACFRZrApAYoCf59B2QVwegDAOkELUSm+sdHa7n1zRXMHlXCfx0+ngN2L2P6iGLcLhmfIxJPAlBYtAZI+gAlVtWnsOJVOOw3kFMCSAASIhNtbPRz8+vfcfD4Cv7+472kJkcknQSgMOkDlARaw9v/D/IqYJ+Ltm22+jYKbNWWFmqaA9HFCbM9LgqzPRRkuynIdkd/mzRDNh+srOWlJdW8v3IrhoK8LDd5XjcelwKlUEBlYRbTRhQzfXgxEwYXUJLr7dXoktaARXWjP/o4coZtn/Oqw+Nt+1X0sctQeFwGXnf45jLwuFS/+rLQOrySdcw2BXEfsaO1xrI1IVuHH0OW25CRQWlIa82vn/8KgBtO2rNf/X0WA4cEoLBIDVC2WxbAS5jvF8DaD+DomyBr22Rl2jQxsntX8xa0bI69cyHtpr3T5+R4XBRku/GbIVraLYpyPBw+aRDZHhdtAYvWdgvL1micD+bvNrfw+jc10ePdhqI8P4vKwiyGl+YyqjSX4SW50RWlY4ON1rCqtpWPVtfx1cam6JdxPCkFHpdBVmwwCocjr9vAHfnCDwe6yDGxAavj9m0JTOGcO9tjkOVxkeUyQIGhVHQ4smE4fTdqWwJsamqnprmdoGVja7DDYcfWzvWMPN6eoWC3inymDCtij2FFFOd4MAzndVT4taKvqRSGUrQGTJZVN/PVxiZWbWklYNrRwGPZzutvb8bIYp64cF+y3K64XX/Rdy99Wc2739Xym2MnM7xEfukUqSEBKMxn+shx52AoaXtOiEjtT9EImHV+x119aAKrbvTTbtr856G7s//uZVghZ66QlnaTlnYrfHN+Ngz4waRKDhxXEQ0vO9PoC/LlhiZWb2lla2uA2pYAm5vb+XpjE69/vRmri2DjNhTTRhRz8cG7MWFwAYZSaLbVSsC22hC9XTrYtt/5wQppgiGboOXczPDPgZhtQcvu8JzQdjUusa/hbN9Wlh0eA76gRX2bTbsZIhiyo2WytY4GGqWgoiCL4SU5zBpVQo7HhWGoaKDqLMDE/pLfboZYvrmFD1Zt5bkvNnb5ZxHL6zaYNKSQwydWkpflxu1S0Zo/l6FwKYVhOK/X5DeZ/95q7nh7JVceNbHbryF6R2vNdzUtVNX7aQtYtAUtbO38ApLjcWEoaPCZNPiCPLBwDdOGF3H+/qNTXWyRwSQAhfktv4wAS6RVb0P153DC3eDO6rjP7P1SGFUNTtPlnHHl7Du2rK+ljCrO9XLw+AoOHl+xwz4rZLOlJUDI1jsEFq1hUGEWuV75p9VdtS0B/MFQNGDZ2vkyjdQoRUKX120wpjwPTw86yG5tDTD/ve+Zu8cQpgwvSuC7yExaazY0+Hl5aTUvfLGRFTWt3TqusjCLP586FZc0T4oUkk/pMJ/lk/4/ibR5qXO/x0k77OpLDdD6eicAJXMSNLfLYGixhOV4qSjI2vWTeuk3P5zM+ytqufKZL3npP+fsUPPX0m7yzvItNPvN6LYst4v8bDf5WW6y3Ean/VMMBaV5XgYVZpPnde20D0skyIVs3SHgOeFZh7dve/72TZXgPN7WT2zbE2L7jsU+N9vj6nOw0FoTsJxm5cg1sEI2X1c388n3dXyxvpG1dW2sq/PhN0MAzBpVwh9O3JNpw4vJy3KRl+VGKWgP2vjNECFbU5LnoSTXS7ZHmiRF6kkACvObfhkBlkjN1ZBdHJ37J1ZfAlBVvR+PSzG4UPpuiR0V5Xr440lT+Ok/FnPTa8s5fvpQAOragry0pJpXv97UZf+x7sj2GLgNZ7biSK1gKKbmKtmUguIcDyV5XnK9uw4aWkPAsvEHQ7SbIfzhW6TsbkORn+0mYNrRsDO6LJfdB+VzwO7ljC7L5aDxFYwq2/HfthDpTAJQmNQAJVhzNRQO63SXtizw9L4JbFhxjlSli536weRKTp4xjPsWruG+hWui2wuy3ZwyczinzBrOyHANotYQDNm0hvuORWpBtmfZmvo2p29YbUuAkA2ucCdupw8SuMIdul3hx5G+Sa5wfyhX+LERqeLROqbfVuS+47ad9esCpxlWa2gLWDT4TOp9QfzBEN35l5HtcZHtcZHjNaJ9drK9ruj5WgMWLkMxa1QJe48pZVCB/MIh+j8JQGHSByjBmjdC4dBOd/WtBsgnawCJXfrzqVM5ccYwzJATaLxug71Gl0pTjBAZTAJQmM/yUZYdv060YjvN1TBkWqe7+hqA9pyy6/WCRGbzuAwO6qRDuxAic8mY7zCf6ZM+QIliBaFtS5dNYKoXa4G1hqv6R8g8IkIIIXpIAlCY3/JLH6BEadnk3Me5CawqOgJMgqsQQoiekQAUJn2AEqi52rnvJACZmzaBZeEuL+/xaaND4KUGSAghRA9JAAJsbTs1QB75Ik2I5vBMv50EIN+nnwKQu/dePT5tpAZopHSCFkII0UMSgIB2qx1AaoASpYsaoLZFi3AVFZE1blyPT7uhwU9+lpviXFlJXgghRM9IAEJWgk+45mrw5kNW4Q67fJ8uImev2Sij538V19f7GF6SIytJCyGE6DEJQDizQIPUACVMZA6g7YKKuWkT5vr15O29d69OW1Xvk+YvIYQQvSIBiJgaIOkDlBgtmzrv/7NoEQC5e/W8/09kEUaZBFEIIURvSADCGQEG0gSWMDtZBqPt008xiorImjChx6fc2hrEb4YYUSK1dkIIIXpOAhDbaoCkCSwBQha0bN5pDVDu7N73/4HkrgIvhBBi4JAAxLY+QNIElgBtW0CHdghA5ubNmOvWk7vX7F6ddkODDIEXQgjRexKAkBqghIoOge/YBBbp/9OXDtAAw2USRCGEEL0gAQjpA5RQO5kE0ffppxiFhb3q/wNOE1h5fhY5XlnNWwghRM9JAMJZCBWkBighwjVApt9Dzc030/yvf2HV1eH7NNz/x9W7AFNV72ekrAEmhBCil9ypLkA6iNQASQBKgOaN4M6m7uGnaXjssQ67is88s9enrWrwMWtUSV9LJ4QQIkNJAMLpA5TlysJlSHNK3DVXY+cOoemJVyg4ei5lP/4xbZ98QuC7FRQec0yvTmmGbDY1tcsiqEIIIXpNAhBODZD0/0mQ5mpaNhdhN2+h5LTTyJk6lZypU/t0yk2N7YRsLSPAhBBC9Jr0AcLpAyTNXwnSvJGmb4O4hw4hd99943LKxevqAZgwuCAu5xNCCJF5JAARrgGSOYDiz7YxN2+hbVUjxSed3KsJDzvz1rc1DCrIYsqworicTwghROaRAITTB0hqgBLAV0fjKjdoKDrpxLicMmCFeO+7Wn4wuRLDkFXghRBC9I4EIKQPUKLoxiqa1uSSO2V3vMOHx+WcH66uoy0Y4ohJlXE5nxBCiMwknaBx+gAV5WVOc4rWGqu2Fh0MgtYdblpr0AA93K71DvsCC1/EbHNTceyRcSv7W8tqyPW62G+3sridUwghROaRAES4CcwzsJvAAqtW0fzGG7R/uRT/V18Rqq9PyusaHpuCY46Py7lsW/PWtzUcPL6CbI9MWSCEEKL3BnwA0oEAgVWrunxOUXULg0PmLp+nsrPxDBuGUund90Rrjd3SQqihAd/iz2h85hn8X3wBSpG1+27kH3ww2ZMnY+TlgVKgcN5T5Iba5XaU6mTfdts/fxjvhhcxykbE5X19Xd1ETXOAH0jzlxBCiD7qdwFIKTUeeAgoA+qAeVrrlTt7fmDlKr4/9rguz/lbAF7je17b5eu7Bw8m74D9ydtvf1xFhT0oOdhtbbQvX077t98SWLkSbZrODh3zJK073nfzZx2zzfb7IXJuwDtmDIOuuoqiE47HXZakpqPv34P3XoQ994Y4jf56c1kNhoLDJg6Ky/mEEEJkrn4XgID5wN1a60eUUucA9wCH7ezJnhHDGXbb/+6wvS3YxgurX+SLLZ9Tnl3J4UNOp9Bb2uULe32t5H33JS1vvkXTs8/1rvQuF1ljx5I7cxZGbkzH69hapdgKpvD2jrVOaof9sT8bOdm4SkpxlZaQNXo02dOmJbfWqupTePwsKB0Lp/8jbqd9c1kNs0eXUpLnjds5hRBCZCalY2sU0pxSahCwAijTWoeUUi6cWqBxWuvazo4pGJuvZ/5+2g7b20LtmNpiePN08qono+hen5K8LBezhxcx2xMgr6cVG24XDKkEr6eHB/Yf7mAju/37KszsUpYd9SRmbnxqa5r8Jv/x8Gf8+oeT+OmBY+NyTiGEEP2PUuozrfXsvp6nv9UAjQA2aq1DAOEQVB3e3nkAskwOaajeYbtHa05taWVicC1kvdCzUmzo2dM7+K4Px/YTG3UZp7dczsZHvge+j9t5lYIjJkv/HyGEEH3X3wJQtyilLgQuBBg1fDCnzbhjh+e4lGJ0eR70YjSRZWu+39pK0LL7XNaBqK1kMjdnxX9agdI8L6PK8uJ+XiGEEJlnwDeBzZ49Wy9evDiZxRRCCCFEgsSrCaxfzQSttd4CLAHOCm86C/hiZ+FHCCGEEKIz/bEJ7CLgIaXUb4EGYF6KyyOEEEKIfqbfBSCt9XJgn1SXQwghhBD9V79qAhNCCCGEiAcJQEIIIYTIOBKAhBBCCJFxJAAJIYQQIuNIABJCCCFExpEAJIQQQoiMIwFICCGEEBlHApAQQgghMo4EICGEEEJkHAlAQgghhMg4EoCEEEIIkXEkAAkhhBAi4yitdarLkFBKqSZgZarLsRPlwNZUF6ITRUBTqgvRiXS9XiDXrDfkmvVMul4vkGvWU+l6vaB/XLNRWuuKvp6w360G3wtPaq0vTHUhOqOUWqy1np3qcmxPKXVvOl6zdL1eINesN+Sa9Uy6Xi+Qa9ZT6Xq9ILOuWSY0gb2c6gL0Q3LNek6uWc/JNesZuV49J9es5zLmmg34AKS1zpg/zHiRa9Zzcs16Tq5Zz8j16jm5Zj2XSddswAegNHdvqgvQz8j16jm5Zj0n16zn5Jr1jFyvnov7NRvwnaCFEEIIIbYnNUBCCCGEyDgSgIQQQgiRcSQAxYFSqkwp9S+l1HdKqaVKqeeUUhXhfeOVUh8ppVaE78fFHNfVvh8qpT5XSn2llHpPKTUmFe8tUfpwzW5RSq1RSmml1J7bnXOn+waCBF2zF5RSXyqlvlBKfaCUmp7kt5VQCbpma5VSy5VSS8K3o5L9vhIl3tdLKTU65jotCV+7+lS8t0RJ0N8x+fzf7pp1dUx4f88//7XWcuvjDSgFDol5fDNwf/jnd4Bzwj+fA7wT87xO9wElOBM+jY/Z91qq32eaXLM5wAhgLbDndufc6b6BcEvQNSuK+fkE4PNUv89+cM0G5N+vRF2v7c5/O3BXqt9nOl8z+fzf6ffiTo/pyd/BDuVI9YUYiDfgFOAtYBDQCLjC213hxxW72LcX8M12f1k0UJ7q95bKa7bd83f6l3wgf0El6pqF988DFqf6faX7NcuUv1/xul4x+7xALTAz1e8rna+ZfP7v+prFHtPJ9m7/+5QmsDhTShnAxcBLOGl0o9Y6BBC+rw5v72rfCmCwUmqv8GnPDt+PTNb7SKYeXDMRFs9rppS6Tym1HrgBOC8xJU69OP89ezRcDf9XpVRxIsqbagn4d3l8+Byfx7us6SJO10w+/3dxzbY7ptckAMXfnUArcFdvT6C1bgLOAG5TSi1mWyo241HANNTna5aB4nbNtNY/1VqPBK7FqVYeqOJ1zQ7UWk/D+U1dxeF86Sre/y4vAB6I07nSlXz+91xvrllc/m5mwlpgSaOUugUYBxyntbaVUlXAMKWUS2sdUkq5gKFAFc4H5872obV+C6dKEKVUJXAl8H3y31Vi9fCaCRJ3zbTWDyul7lVKlWmt6xJQ9JSJ5zXTWkf+jQaUUn+lj7+FpqN4/x1TSg0FDgbOTVihUyzOf8fk838n12z7Y/ry+lIDFCdKqRuAWcCJWusAgNZ6C7AEOCv8tLOAL7TWtV3tC59vcPjeAP4IzNdatyXn3SRHT69ZSgqZZuJ5zZRS+UqpETGPjwPqw7cBI87XLE8pVRT+WQFnhs8zYCTo3+X5wD8HWrCOiPc1k8//nX4v7nBMn6Sy49NAuQF74HRS+y78h7cEeD68byLwCU677ifAhJjjutp3H/AtsBr4G5Cd6veZJtfsDmADYAGb6dhZcKf7BsIt3tcMqAQ+Br4Kn+sdBlgH1QRcs7HAF8BS4BvgaWBIqt9nul6vmP0rgLmpfn/95Zohn/87XLOujunO38HObrIUhhBCCCEyjjSBCSGEECLjSAASQgghRMaRACSEEEKIjCMBSAghhBAZRwKQEEIIITKOBCAhhBBCZBwJQEIIIYTIOP8fRTqRtRJPlVgAAAAASUVORK5CYII=\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
188
      "text/plain": [
Sarah Heidekorn's avatar
Sarah Heidekorn committed
189
       "<Figure size 648x504 with 1 Axes>"
Sarah Heidekorn's avatar
Sarah Heidekorn committed
190
191
192
193
194
195
196
197
198
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
199
    "# define and plot request/path\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
200
    "def area():   \n",
201
    "    res = elements(\"/area/density/groupBy/boundary\"                  #endpoint\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
202
    "         ,filter=filter_req\n",
203
204
    "         ,bpolys=regions                                             #spatial boundary\n",
    "         ,time=t_mon)                                                #timeframe\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
205
206
    "    display(res.url)\n",
    "    green = res.json()\n",
207
208
    "    #display(body)                                                    #in case you'd like to look at the output\n",
    "    df = pd.DataFrame()                                              #create DataFrame\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
209
210
211
212
    "    for groupBy in green['groupByResult']:\n",
    "        series = pd.Series({row['timestamp']:row['value'] for row in groupBy['result']})\n",
    "        df[groupBy['groupByObject']] = series\n",
    "    df.set_index(pd.to_datetime(df.index),inplace=True)\n",
213
    "    df.to_pickle(\"./df_density.pkl\")                                 #turns DataFrame into pickle-file\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
214
215
    "    density = round(df, 2)\n",
    "    density.plot(figsize=(9,7), fontsize=11)                            #plot density development over the years\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
216
217
218
    "area()"
   ]
  },
219
220
  {
   "cell_type": "markdown",
221
   "id": "terminal-treasury",
222
223
   "metadata": {},
   "source": [
Sarah Heidekorn's avatar
Sarah Heidekorn committed
224
    "#### In the graphic above you can see the development of the density of natural=wood as well as landuse=forest information"
225
226
   ]
  },
Sarah Heidekorn's avatar
Sarah Heidekorn committed
227
228
229
230
231
232
233
  {
   "cell_type": "markdown",
   "id": "editorial-scotland",
   "metadata": {},
   "source": [
    "When looking at the plot of the output dataset it is pretty safe to say that Edmonton has the lowest density of forest/wood information given when comparing it to the other regions. Although this might be part of low mapping activities too, it might as well be related to local oil and gas production areas or farmland which reduced the amount of forest. Another factor could be the general geographic connection to the Prairies Ecozone.\n",
    "\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
234
235
    "Furthermore, it is worth mentioning that all cities, but Vancouver, only really added their forest information around 2010 and 2011. \n",
    "Interestingly the density values for Vancouver only cross parts with the Ottawa- and Halifax-values around 2017. Additionally there is a strong increase in density in the early 2013 months. During that same year the Open Data Hackathon took place on Feb 23rd.\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
236
    "\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
237
    "Ottawa and Halifax both begin to have increasing information starting around the same period in 2010 and cross each other several times until Ottawa finally takes its place at the top in 2018. Densitywise Ottawa is the winner looking at the overall development of density throughout the years. \n",
238
    "\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
239
    "[Canvec imports](https://wiki.openstreetmap.org/wiki/CanVec) between 2010-2012 are might be related to the strong increases during that time period as the tag _natural=wood_ was part of the data given (-> CanVec Vegetation (VE)). Another related import might be one of [Canadian Protected Areas](https://wiki.openstreetmap.org/wiki/Import/Catalogue#One-Time_Imports) which has been in progress since 2009 ([from geogratis](http://geogratis.gc.ca)) but that is only an assumption."
Sarah Heidekorn's avatar
Sarah Heidekorn committed
240
241
242
243
   ]
  },
  {
   "cell_type": "code",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
244
   "execution_count": 4,
Sarah Heidekorn's avatar
Sarah Heidekorn committed
245
246
247
248
   "id": "potential-intent",
   "metadata": {},
   "outputs": [
    {
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>region</th>\n",
       "      <th>mean</th>\n",
       "      <th>median</th>\n",
       "      <th>min</th>\n",
       "      <th>max</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>Vancouver</td>\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
280
281
       "      <td>204006.88</td>\n",
       "      <td>260064.90</td>\n",
282
283
284
285
286
287
       "      <td>614.07</td>\n",
       "      <td>319494.75</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>Halifax</td>\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
288
289
       "      <td>223159.97</td>\n",
       "      <td>296758.98</td>\n",
290
291
292
293
294
295
       "      <td>0.00</td>\n",
       "      <td>324080.16</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>Edmonton</td>\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
296
297
       "      <td>28518.29</td>\n",
       "      <td>32828.07</td>\n",
298
299
300
301
302
303
       "      <td>0.00</td>\n",
       "      <td>49962.98</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>Ottawa</td>\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
304
305
       "      <td>234835.11</td>\n",
       "      <td>316338.05</td>\n",
306
307
308
309
310
311
312
313
       "      <td>1942.07</td>\n",
       "      <td>330267.47</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
Sarah Heidekorn's avatar
Sarah Heidekorn committed
314
315
316
317
318
       "      region       mean     median      min        max\n",
       "0  Vancouver  204006.88  260064.90   614.07  319494.75\n",
       "1    Halifax  223159.97  296758.98     0.00  324080.16\n",
       "2   Edmonton   28518.29   32828.07     0.00   49962.98\n",
       "3     Ottawa  234835.11  316338.05  1942.07  330267.47"
319
320
321
322
323
324
325
326
327
328
329
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "<AxesSubplot:ylabel='region'>"
      ]
     },
Sarah Heidekorn's avatar
Sarah Heidekorn committed
330
     "execution_count": 4,
331
332
333
334
335
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
Sarah Heidekorn's avatar
Sarah Heidekorn committed
336
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAFlCAYAAAC3GaEhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAeNElEQVR4nO3df7RVZb3v8fcXRLeIh0zLy49qo2GggIhoJGponn5oGd5jJ7tWpMeLP65H7Zz0al5PVDezBjXM7Kh4M8xj5dA0sV8nLT1mabaJ34FChYU6MCkpzG2I3/vHmtAWN7CBZ+21917v1xhrrLmeNedc32eNKfvjM+d6ZmQmkiRJJfRrdAGSJKnvMFhIkqRiDBaSJKkYg4UkSSrGYCFJkooxWEiSpGJ2aXQBfcE+++yTra2tjS5DkqRuMXfu3Kcz81WdvWewKKC1tZW2trZGlyFJUreIiMe29J6nQiRJUjEGC0mSVIzBQpIkFWOwkCRJxRgsJElSMQYLSZJUjMFCkiQVY7CQJEnFGCwkSVIxBgtJklSMwUKSJBVjsJAkScUYLCRJUjEGC0mSVIzBQpIkFWOwkCRJxRgsJElSMQYLSZJUzC6NLqAvaF+8hKWjRje6DEmSXmb0sqXd+nmOWEiSpGIMFpIkqRiDhSRJKsZgIUmSijFYSJKkYgwWkiSpGIOFJEkqxmAhSZKKMVhIkqRinHmzgF8NgX+8ZBcWTVvU6FIkSWooRywkSVIxBgtJklSMwUKSJBVjsJAkScUYLCRJUjEGC0mSVEyPDhYRMTwi7oyI5RHxq4j4QkTsGhHjI+L4DutNiYgjGlmrJEnqwcEiIgK4HfhWZo4EDgAGAZ8CxgPHd1h9CmCwkCSpwXryBFnHAu2Z+RWAzNwQER8GHgPWU8seRwJfB84CNkTE+4F/Bl4B/B9gV2ANcGpmro6IRcBRwFrgaeDDmfnViLgJuBFYAdwE7FHVcG5m/rRbeitJUh/Qk4PFQcDcjg2Z+aeIWAl8BTggM88FiIjdgXWZObN6vRcwKTMzIs4ALgL+FfgJMJlaOPk1tZDxVWAScDbwIvD3mdkeESOphZaJnRUXEdOB6QCvHRws+s1vYcbggt2XJDW1GWsbXcEO6cnBIoDcjvaOhgO3RMQQaqMWv6nafwwcTS1YXANMj4hhwB8yc11EDAaujojxwAZqp186lZmzgFkAE4f231Y9kiQ1hR57jQWwhM1GCyLi74DXUPujvzVfBK7OzLHAmUBL1X4/tVGKo4D7gN8DJ1MLHAAfBlYDB1efvevOdkKSpGbSk4PFD4GBEfFBgIjoD3wOmE3tj/+eHdb982avBwOPV8vTNjZm5u+AfYCRmflr4AHgI/wtWAwGnszMF4EPAP3LdkmSpL6txwaLzEzgJOA9EbEceBRoBz4K3AscGBHzI+K9wF3ASdXro4AZwK0R8WNqF2l29LNqX1ALFMOoBQyAfwemRcRD1E6DPFuv/kmS1BdF7e+3dsbEof2zbfqgRpchSepLevDFmxExNzM7/XFDjx2xkCRJvY/BQpIkFWOwkCRJxRgsJElSMQYLSZJUTE+eebPXWJT70dp+ZaPLkKQuW3nFCY0uQX2UIxaSJKkYg4UkSSrGYCFJkooxWEiSpGIMFpIkqRiDhSRJKsZgIUmSijFYSJKkYgwWkiSpGGfeLGDssMG0OYudJEmOWEiSpHIMFpIkqRiDhSRJKsZgIUmSijFYSJKkYgwWkiSpGIOFJEkqxmAhSZKKMVhIkqRiDBaSJKkYg4UkSSrGYCFJkooxWEiSpGIMFpIkqRiDhSRJKsZgIUmSijFYSJKkYgwWkiSpGIOFJEkqxmAhSZKKMVhIkqRiDBaSJKkYg4UkSSrGYCFJkooxWEiSpGIMFpIkqRiDhSRJKsZgIUmSijFYSJKkYgwWkiSpGIOFJEkqxmAhSZKKMVhIkqRiDBaSJKkYg4UkSSrGYCFJkooxWEiSpGIMFpIkqRiDhSRJKsZgIUmSitml0QX0Be2Ll7B01OhGl9Ewo5ctbXQJkqQewhELSZJUjMFCkiQVY7CQJEnFGCwkSVIxBgtJklSMwUKSJBVjsJAkScUYLCRJUjEGC0mSVIwzbxbQMuYgRre1NboMSZIazhELSZJUjMFCkiQVY7CQJEnFGCwkSVIxBgtJklSMwUKSJBVT92ARERsiYn6Hx8WdrDMlIr5d5zqmRMQR9fwMSZKaXXfMY/FcZo7vhs/ZlinAOuCnDa5DkqQ+q2ETZEXE24ErgaeBX3RonwGMAIYABwD/AkwC3gE8DrwrM9dHxFuAmdT68HPg7Mx8PiJWAjcC7wIGAO8B2oGzgA0R8X7gn4HfAjcArwJ+D5yWmb+NiNnAn4CJwH8DLsrM2+r1PUiS1Jd0R7DYPSLmd3j9aeBO4HrgWGAFcMtm2+wPHAMcCDwI/ENmXhQRdwAnRMT3gdnAWzLz0Yj4KnA2taAC8HRmToiIc4CPZOYZEXEtsC4zZwJExF3AVzPzxog4HbgKmFptPwQ4EhgFzAFeFiwiYjowHeC1gwNmDN6R76Z7zVjb6AokSX1cd1y8+Vxmju/wuIXaH+zfZObyzEzgPzbb5nuZuR5YBPQHvl+1LwJagTdU2z9atd8IHN1h+9ur57nV+p15E/C1avkmakFio29l5ouZ+Utg3842zsxZmTkxMye+amBsqe+SJDWVRv4qJLfy3vMAmfkisL4KHwAvUhtl2dZf8uer5w10fVSmYz3Pd1g2NUiS1EWNChbLgBERsX/1+n07sH1rRLy+ev0B4L+2sc2fgT07vP4pcEq1fCrwwHbWIEmSNtMdwWL3zX5uekVmtlO7PuE7EfEA8Nj27LDa/jTg1ohYRG0k49ptbHYXcFJVw1HAecBpEbGQWjA5fzv7JUmSNhN/O8ugHTVxaP9smz6o0WVsmxdvSpIKiIi5mTmxs/eceVOSJBVjsJAkScUYLCRJUjEGC0mSVEzDpvTuSxblfrS2X9noMl5i5RUnNLoESVITcsRCkiQVY7CQJEnFGCwkSVIxBgtJklSMwUKSJBVjsJAkScUYLCRJUjEGC0mSVIzBQpIkFePMmwWMHTaYNme6lCTJEQtJklSOwUKSJBVjsJAkScUYLCRJUjEGC0mSVIzBQpIkFWOwkCRJxXRpHouIOAC4EHhdx20y89g61SVJknqhrk6QdStwLXA9sKF+5UiSpN6sq8Hihcy8pq6VSJKkXq+r11jcFRHnRMSQiHjlxkddK5MkSb1OV0csplXPF3ZoS2C/suVIkqTerEvBIjNH1LsQSZLU+3X1VyEDgLOBo6um+4DrMnN9neqSJEm9UFdPhVwDDAD+vXr9gartjHoUJUmSeqeuBovDMvPgDq9/FBEL6lGQJEnqvbr6q5ANEbH/xhcRsR/OZyFJkjbT1RGLC4F7I+LXQFCbgfO0ulUlSZJ6pa7+KuSHETESeAO1YLEsM5+va2WSJKnX2WqwiIhjM/NHEfHfN3tr/4ggM2+vY22SJKmX2daIxZuBHwHv6uS9BAwWkiRpk60Gi8z8WPXs9RSSJGmbujpB1r900rwWmJuZ84tWJEmSeq2u/tx0InAWMKx6TAemANdHxEX1KU2SJPU2Xf256d7AhMxcBxARHwNuozbF91zgs/UpT5Ik9SZdHbF4LfDXDq/XA6/LzOcAf3YqSZKAro9YfA14KCLurF6/C/h6ROwB/LIulUmSpF6nqxNkfTIivgscSW2CrLMys616+9R6FSdJknqXrp4KAdgd+FNmXgk8FhEj6lOSJEnqrboULKqLNf83cEnVNAD4j3oVJUmSeqeujlicBJwIPAuQmU8Ae9arKEmS1Dt1NVj8NTOT2jTeVBdtSpIkvcQ2g0VEBPDtiLgOeEVE/E/gHuD6ehcnSZJ6l23+KiQzMyKmUrvG4k/Ubp3+b5l5d51rkyRJvUxX57F4EHgmMy+sZzGSJKl362qwOAY4MyIeo7qAEyAzx9WlKkmS1Ct1NVi8o65VSJKkPqGrM28+Vu9CJElS77c9M29KkiRtlcFCkiQV09VrLLQV7YuXsHTU6EaXIUlqQqOXLW10CS/hiIUkSSrGYCFJkooxWEiSpGIMFpIkqRiDhSRJKsZgIUmSijFYSJKkYgwWkiSpGIOFJEkqxpk3C2gZcxCj29oaXYYkSQ3niIUkSSrGYCFJkooxWEiSpGIMFpIkqRiDhSRJKsZgIUmSiunxwSIi1m32+kMRcfU2ttm0TkScFREfrJZHRcT8iJgXEfvXr2pJkppTn5/HIjOv7fByKnBnZn6sQeVIktSn9fgRi62JiHdFxM+qEYh7ImLfTtaZEREfiYjjgQuAMyLi3uq9b0XE3IhYEhHTq7bXRcTyiNgnIvpFxI8j4q3d2jFJknqp3jBisXtEzO/w+pXAnGr5AWBSZmZEnAFcBPxrZzvJzO9GxLXAusycWTWfnpl/iIjdgZ9HxDcz87GI+AxwLfAz4JeZ+YPN91cFkekArx0cMGPwzvdUktQ7zFjb6Ap6rN4QLJ7LzPEbX0TEh4CJ1cvhwC0RMQTYFfjNdu77vIg4qVp+DTASWJOZ/y8i3gOcBYzvbMPMnAXMApg4tH9u5+dKktQn9epTIcAXgaszcyxwJtDS1Q0jYgpwHPCmzDwYmLdx+4gYSC20AAwqWK8kSX1abxix2JrBwOPV8rQd2PaPmfmXiBgFTOrw3meAm4HHgOuBd+5soZIkNYPePmIxA7g1In4MPL2d234f2CUiFgKfBB4CiIg3A4cBn8nMm4G/RsRp5UqWJKnvikwvD9hZE4f2z7bpnjGRpKbR5BdvRsTczJzY2Xu9fcRCkiT1IAYLSZJUjMFCkiQVY7CQJEnFGCwkSVIxvX0eix5hUe5Ha/uVjS5DUpNZecUJjS5BehlHLCRJUjEGC0mSVIzBQpIkFWOwkCRJxRgsJElSMQYLSZJUjMFCkiQVY7CQJEnFGCwkSVIxzrxZwNhhg2lzBjxJkhyxkCRJ5RgsJElSMQYLSZJUjMFCkiQVY7CQJEnFGCwkSVIxBgtJklSMwUKSJBVjsJAkScUYLCRJUjEGC0mSVIzBQpIkFWOwkCRJxRgsJElSMQYLSZJUjMFCkiQVY7CQJEnFGCwkSVIxBgtJklSMwUKSJBVjsJAkScUYLCRJUjEGC0mSVIzBQpIkFWOwkCRJxRgsJElSMQYLSZJUjMFCkiQVY7CQJEnFGCwkSVIxBgtJklSMwUKSJBVjsJAkScXs0ugCJElqlPXr17Nq1Sra29sbXUqP1NLSwvDhwxkwYECXtzFYSJKa1qpVq9hzzz1pbW0lIhpdTo+SmaxZs4ZVq1YxYsSILm/nqRBJUtNqb29n7733NlR0IiLYe++9t3s0x2AhSWpqhoot25HvxmAhSZKK8RoLSZIqrRd/p+j+Vl5xQtH99QaOWEiS1EArV65k1KhRnHHGGYwZM4ZTTz2Ve+65h8mTJzNy5Egefvhhnn32WU4//XQOO+wwDjnkEO68885N2x511FFMmDCBCRMm8NOf/hSA++67jylTpnDyySczatQoTj31VDKzW/rjiEUB7YuXsHTU6EaXIUnaTuu/dDXPbdhQt/0/t3jxNtdpf/xxVqxYwU2XX84XzjuPI085ha/+5S/cfe21fPvee/nkxRczav/9OfbYY7nhhht45plnOPzwwznuuON49atfzd13301LSwvLly/nfe97H21tbQDMmzePJUuWMHToUCZPnsxPfvITjjzyyLr1dSODhSRJDdY6bBhjDjgAgANf/3qOeeMbiQjGjBzJY088weOrV/O9Bx9k5syZQO3XLL/97W8ZOnQo5557LvPnz6d///48+uijm/Z5+OGHM3z4cADGjx/PypUrDRaSJDWD3XbdddNyv4hNr/v168eGDRvo368f37z9dt7whje8ZLsZM2aw7777smDBAl588UVaWlr+ts/ddtu03L9/f1544YU696Kqv1s+RZIk7bDjJk/mi1/84qbrJObNmwfA2rVrGTJkCP369eOmm25iQx1P63SVwUKSpB7ukjPPZP369YwbN44xY8Zw2WWXAXDOOedw4403MmnSJB599FH22GOPBlcK0V1XifZlY1p2z1tbWxtdhiRpO63/0tWM3HffRpfRJbuPGdOQz126dCmjR7/0BwoRMTczJ3a2viMWkiSpGIOFJEkqxmAhSZKKMVhIkqRinMeigF8NgdHLlja6DEnSdlq6dCm7j3bm5JIcsZAkScUYLCRJ6iOmTJmy6V4hxx9/PM8880y31+CpEEmSNpoxuPD+1pbd33b47ne/25DPdcRCkqQG2pnbpj/33HOccsopjBs3jve+970899xzm/bb2trK008/DcDUqVM59NBDOeigg5g1a9amdQYNGsSll17KwQcfzKRJk1i9evVO98dgIUlSg61YsYLzzz+fhQsXsmzZMr72ta/xwAMPMHPmTC6//HI+9alPceyxx/Lzn/+ce++9lwsvvJBnn32Wa665hoEDB7Jw4UIuvfRS5s6d2+n+b7jhBubOnUtbWxtXXXUVa9asAeDZZ59l0qRJLFiwgKOPPprrr79+p/viqRBJkhpsxIgRjB07FoCDDjqIt7zlLUQEY8eOZeXKlaxatYo5c+a87Lbp999/P+eddx4A48aNY9y4cZ3u/6qrruKOO+4A4He/+x3Lly9n7733Ztddd+Wd73wnAIceeih33333TvelLsEiIu4DPp2Z/9mh7QLggMw8px6fKUlSb9XxFuf9+vXb9Lpfv3688MIL9O/fn29+85svu206QERsdd/33Xcf99xzDw8++CADBw5kypQptLe3AzBgwIBN25e6tXq9ToV8HThls7ZTqvZeJSIc1ZEkNdTb3va2Tm+bfvTRR3PzzTcDsHjxYhYuXPiybdeuXctee+3FwIEDWbZsGQ899FBda61XsLgNeGdE7AYQEa3AUOB/RERbRCyJiI9vXDkiVkbExyPiFxGxKCJGVe2DIuIrVdvCiPiHqv19VdviiPhMh/2s67B8ckTMjojB1f77Ve0DI+J3ETEgIvaPiO9HxNyI+HGHz50dEZ+PiHuBTfuXJKkRLrvssk5vm3722Wezbt06xo0bx2c/+1kOP/zwl2379re/nRdeeIFx48Zx2WWXMWnSpLrWWrfbpkfEd4BZmXlnRFwM7E3t9MgfIqI/8EPgvMxcGBErgc9l5hcj4hxgQmaeUYWG3TLzgmqfewG7Aw8BhwJ/BH4AXJWZ34qIdZk5qFr3ZOCdmfmhiLgTuDIz742I9wJ/X+3/h8BZmbk8It5Y1XdsRMwG9gHenZkbttC/6cB0gNcOjkMfu2DP4t+hJPVpDfwp5kad3RJcL9WTbpve8XTIxtMg/xgRvwDmAQcBB3ZY//bqeS7QWi0fB3xp4wqZ+UfgMOC+zPx9Zr4A3AwcvY1abgHe26GWWyJiEHAEcGtEzAeuA4Z02ObWLYWKqpZZmTkxMye+auDWz29JktQs6nn9wLeAz0fEBGqjDH8EPgIclpl/rEYFWjqs/3z1vKFDXQFsPqSytb/iHdftuO85wKcj4pXURjp+BOwBPJOZ47ewr2e38jmSJKkTdRuxyMx1wH3ADdRGK/6O2h/rtRGxL/COLuzmB8C5G19Up0J+Brw5IvapTqm8D/ivapXVETG6up7ipM1qeRj4AvDtzNyQmX8CfhMR76n2HRFx8M70WZKkZlfvCbK+DhwMfCMzF1A7BbKEWtj4SRe2/7/AXtVFmguAYzLzSeAS4F5gAfCLzLyzWv9i4NvURiSe3GxftwDvr543OhX4p2rfS4B3b38XJUnSRnW7eLOZTBzaP9umD2p0GZLUu3jxZq/Qky7elCRJTcZgIUlSDzdnzhyuuOKKRpfRJc4qKUlSZeyNY4vub9G0RUX2c+KJJ3LiiScW2Ve9OWIhSVIDdeW26bNnz+bcc2s/kvzQhz7EeeedxxFHHMF+++3Hbbfd1uAevJQjFgUsyv1obb+y0WVI6kFWXnFCo0tQL7JixQpuvfVWZs2axWGHHbbptulz5szh8ssvZ+rUqS9Z/8knn+SBBx5g2bJlnHjiiZx88smNKbwTBgtJkhpsW7dN39zUqVPp168fBx54IKtXr+7marfOUyGSJDXYtm6bvrX1e9q0EQYLSZJUjMFCkiQV48ybBew2ZGQOmXZlo8uQ1IN48Wbv4Myb2+bMm5IkqWEMFpIkqRiDhSRJKsZgIUmSinGCrALGDhtMmxdqSZLkiIUkSSrHYCFJkorxVIgkSZWlo8rOaTF62dKi++sNHLGQJKmBunLb9IcffpgjjjiCQw45hCOOOIJHHnkEgM9//vOcfvrpACxatIgxY8bwl7/8pZHdMVhIktRoK1as4Pzzz2fhwoUsW7Zs023TZ86cyeWXX86oUaO4//77mTdvHp/4xCf46Ec/CsAFF1zAihUruOOOOzjttNO47rrrGDhwYEP74qkQSZIabFu3TV+7di3Tpk1j+fLlRATr168Hanc/nT17NuPGjePMM89k8uTJjexGraZGFyBJUrPb1m3TL7vsMo455hgWL17MXXfdRXt7+6b1ly9fzqBBg3jiiSe6ve7OGCwkSerh1q5dy7BhwwCYPXv2S9rPP/987r//ftasWcNtt93WoAr/xmAhSVIPd9FFF3HJJZcwefJkNmzYsKn9wx/+MOeccw4HHHAAX/7yl7n44ot56qmnGlipt00vYuLEidnW1tboMiRJ28nbpm+bt02XJEkNY7CQJEnFGCwkSVIxBgtJUlPzWsMt25HvxmAhSWpaLS0trFmzxnDRicxkzZo1tLS0bNd2zrwpSWpaw4cPZ9WqVfz+979vdCk9UktLC8OHD9+ubQwWkqSmNWDAAEaMGNHoMvoUT4VIkqRiDBaSJKkYg4UkSSrGKb0LiIg/A480uo4G2gd4utFFNFizfwf2v7n7D34Hzdb/12Xmqzp7w4s3y3hkS3OmN4OIaGvm/oPfgf1v7v6D30Gz978jT4VIkqRiDBaSJKkYg0UZsxpdQIM1e//B78D+q9m/g2bv/yZevClJkopxxEKSJBVjsNgJEfH2iHgkIlZExMWNrmdnRcTKiFgUEfMjoq1qe2VE3B0Ry6vnvTqsf0nV90ci4m0d2g+t9rMiIq6KiKjad4uIW6r2n0VEa7d3cjMRcUNEPBURizu0dUufI2Ja9RnLI2JaN3X5JbbQ/xkR8Xh1HMyPiOM7vNfX+v+aiLg3IpZGxJKIOL9qb4pjYCv9b6ZjoCUiHo6IBdV38PGqvSmOgbrITB878AD6A78C9gN2BRYABza6rp3s00pgn83aPgtcXC1fDHymWj6w6vNuwIjqu+hfvfcw8CYggO8B76jazwGurZZPAW7pAX0+GpgALO7OPgOvBH5dPe9VLe/VQ/o/A/hIJ+v2xf4PASZUy3sCj1b9bIpjYCv9b6ZjIIBB1fIA4GfApGY5BurxcMRixx0OrMjMX2fmX4FvAO9ucE318G7gxmr5RmBqh/ZvZObzmfkbYAVweEQMAf4uMx/M2n85X91sm437ug14y8ZE3yiZeT/wh82au6PPbwPuzsw/ZOYfgbuBt5fu37Zsof9b0hf7/2Rm/qJa/jOwFBhGkxwDW+n/lvSp/gNkzbrq5YDqkTTJMVAPBosdNwz4XYfXq9j6f5C9QQI/iIi5ETG9ats3M5+E2j9CwKur9i31f1i1vHn7S7bJzBeAtcDedejHzuqOPvf04+fciFgYtVMlG4eA+3T/q+HpQ6j9H2vTHQOb9R+a6BiIiP4RMR94itof+qY8BkoxWOy4zv5Pu7f/xGZyZk4A3gH8r4g4eivrbqn/W/teevt3VrLPPfm7uAbYHxgPPAl8rmrvs/2PiEHAN4ELMvNPW1u1k7Ze/x100v+mOgYyc0NmjgeGUxt9GLOV1fvkd1CSwWLHrQJe0+H1cOCJBtVSRGY+UT0/BdxB7XTP6mqIj+r5qWr1LfV/VbW8eftLtomIXYDBdH0Yvjt1R5977PGTmaurf2hfBK6ndhxAH+1/RAyg9kf15sy8vWpummOgs/432zGwUWY+A9xH7XRE0xwDpRksdtzPgZERMSIidqV2Qc6cBte0wyJij4jYc+My8FZgMbU+bbxSeRpwZ7U8Bzilutp5BDASeLgaMvxzREyqziF+cLNtNu7rZOBH1bnInqY7+vyfwFsjYq9qmPmtVVvDbfzHtHISteMA+mD/q3q/DCzNzM93eKspjoEt9b/JjoFXRcQrquXdgeOAZTTJMVAX9boqtBkewPHUrqL+FXBpo+vZyb7sR+1K5wXAko39oXYe8IfA8ur5lR22ubTq+yNUVz9X7ROp/UP0K+Bq/jYRWwtwK7WLnR4G9usB/f46taHe9dT+7+GfuqvPwOlV+wrgtB7U/5uARcBCav8gDunD/T+S2tDzQmB+9Ti+WY6BrfS/mY6BccC8qq+LgX+r2pviGKjHw5k3JUlSMZ4KkSRJxRgsJElSMQYLSZJUjMFCkiQVY7CQJEnFGCwkSVIxBgtJklSMwUKSJBXz/wHPt4+0Qk7BNgAAAABJRU5ErkJggg==\n",
337
      "text/plain": [
Sarah Heidekorn's avatar
Sarah Heidekorn committed
338
       "<Figure size 576x432 with 1 Axes>"
339
340
341
342
343
344
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
Sarah Heidekorn's avatar
Sarah Heidekorn committed
345
346
347
    }
   ],
   "source": [
348
    "df_density = pd.read_pickle(\"./df_density.pkl\")          # reads the pickle file which was saved earlier\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
349
350
    "\n",
    "val = {'region':['Vancouver', 'Halifax', 'Edmonton', 'Ottawa'], \n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
351
352
    "       'mean': [204006.88, 223159.97, 28518.29, 234835.11], \n",
    "       'median': [260064.90, 296758.98, 32828.07, 316338.05], 'min':[614.07, 0.0, 0.0, 1942.07], \n",
353
    "       'max':[319494.75, 324080.16, 49962.98, 330267.47]}\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
354
355
356
    "val_density = pd.DataFrame(val)\n",
    "\n",
    "display (val_density)\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
357
    "val_density.plot.barh(0, figsize=(8,6))\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
358
359
360
361
362
363
364
365
366
367
368
369
370
    "\n",
    "#The table was created by searching for the mean, median, minimum and maximum values of each region.\n",
    "#You can do it with numpy, like so:\n",
    "#Ottawa, Ontario:\n",
    "#Oarray = df_density['Ottawa']\n",
    "#OttMean = np.mean(Oarray)\n",
    "#OttMedian = np.median(Oarray)\n",
    "#OttMin = np.min(Oarray)\n",
    "#OttMax = np.max(Oarray)\n",
    "#display(\"Ottawa\")\n",
    "#display(OttMean, OttMedian, OttMin, OttMax) #-> to look at the values"
   ]
  },
371
372
  {
   "cell_type": "markdown",
373
   "id": "formed-morning",
374
375
   "metadata": {},
   "source": [
Sarah Heidekorn's avatar
Sarah Heidekorn committed
376
    "#### Above you can see the output DataFrame 'val_density' with some statistics for the density dataset, below that it was visualized in a barchart."
377
378
379
380
   ]
  },
  {
   "cell_type": "markdown",
381
   "id": "golden-soviet",
382
383
   "metadata": {},
   "source": [
384
    "Apart from Ottawa there is no display of a minimum value in the barchart above. This is due to the fact that Edmonton and Halifax both started at zero in the beginning of the examined timespan but also because the initial value of Metro Vancouver was probably too small to be visible in the graphic.\n",
385
    "\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
386
387
    "When looking at the chart one can once more see that Ottawa has the overall highest density values when taking e.g. the mean or maximum values into account, but even more so, it also has the highest initial (minimum) values!\n",
    "It is followed by Halifax & Vancouver. Edmonton comes last with the smallest overall values."
388
389
   ]
  },
390
391
  {
   "cell_type": "code",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
392
393
   "execution_count": 5,
   "id": "developmental-russian",
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>region</th>\n",
       "      <th>Δ density</th>\n",
419
       "      <th>percent</th>\n",
420
421
422
423
424
425
426
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>Vancouver</td>\n",
       "      <td>316130.09</td>\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
427
       "      <td>0.998</td>\n",
428
429
430
431
432
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>Halifax</td>\n",
       "      <td>299203.41</td>\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
433
       "      <td>1.000</td>\n",
434
435
436
437
438
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>Edmonton</td>\n",
       "      <td>49647.97</td>\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
439
       "      <td>1.000</td>\n",
440
441
442
443
444
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>Ottawa</td>\n",
       "      <td>322071.36</td>\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
445
       "      <td>0.991</td>\n",
446
447
448
449
450
451
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
Sarah Heidekorn's avatar
Sarah Heidekorn committed
452
453
454
455
456
       "      region  Δ density  percent\n",
       "0  Vancouver  316130.09    0.998\n",
       "1    Halifax  299203.41    1.000\n",
       "2   Edmonton   49647.97    1.000\n",
       "3     Ottawa  322071.36    0.991"
457
458
459
460
461
462
463
464
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
Sarah Heidekorn's avatar
Sarah Heidekorn committed
465
       "<BarContainer object of 4 artists>"
466
467
      ]
     },
Sarah Heidekorn's avatar
Sarah Heidekorn committed
468
     "execution_count": 5,
469
470
471
472
473
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
Sarah Heidekorn's avatar
Sarah Heidekorn committed
474
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAD4CAYAAADy46FuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAYJ0lEQVR4nO3df7RdZX3n8fdHYhFHoQEiiybQsCRWkalxyERaV1s66YKoaxY4A2NYHYmWrlgHp3VWO2vAPwZ/TNaSmbG0jIUOlgyBcQSkKlRFTUFHnSIQFI1BaVKhkpKB1KSI00JN/M4f+7nNyeXkuTc/b4Lv11pnnX2+ez/Pffbm3HzOfvY+l1QVkiTtzvNmegCSpEObQSFJ6jIoJEldBoUkqcugkCR1zZrpAexvxx9/fM2fP3+mhyFJh5X777//r6tqzrh1z7mgmD9/PmvXrp3pYUjSYSXJX+5unVNPkqQug0KS1GVQSJK6DApJUpdBIUnqMigkSV0GhSSpy6CQJHUZFJKkrufcN7Ml/fiaf+mnZnoIM+qR97/hgPTrGYUkqcugkCR1GRSSpC6vUUziHOeBmeOUdPjyjEKS1GVQSJK6DApJUpdBIUnqMigkSV0GhSSpa8qgSPKCJPcm+XqS9Une0+rHJlmTZEN7nj3S5rIkG5M8lOSckfoZSda1dVclSasfmeTmVr8nyfyRNsvbz9iQZPl+3XtJ0pSmc0bxDPDPqupVwEJgaZIzgUuBO6tqAXBne02S04BlwCuBpcDVSY5ofV0DrAAWtMfSVr8Y2FZVpwJXAle0vo4FLgdeAywGLh8NJEnSgTdlUNTgB+3l89ujgHOB1a2+GjivLZ8L3FRVz1TVw8BGYHGSE4Gjq+ruqirghkltJvq6FVjSzjbOAdZU1daq2gasYWe4SJIOgml9M7udEdwPnAr8QVXdk+SEqtoMUFWbk7ykbT4X+MpI802t9sO2PLk+0ebR1tf2JE8Cx43Wx7QZHd8KhjMVTj755Onskg4Qv9nuN9v13DOti9lVtaOqFgLzGM4OTu9snnFddOp722Z0fNdW1aKqWjRnzpzO0CRJe2qP7nqqqr8BvsAw/fN4m06iPT/RNtsEnDTSbB7wWKvPG1PfpU2SWcAxwNZOX5Kkg2Q6dz3NSfKTbfko4FeAbwO3AxN3IS0HbmvLtwPL2p1MpzBctL63TVM9leTMdv3hokltJvo6H7irXcf4LHB2ktntIvbZrSZJOkimc43iRGB1u07xPOCWqvpkkruBW5JcDHwXuACgqtYnuQV4ENgOXFJVO1pfbweuB44C7mgPgOuAG5NsZDiTWNb62prkfcB9bbv3VtXWfdlhSdKemTIoquobwKvH1L8HLNlNm5XAyjH1tcCzrm9U1dO0oBmzbhWwaqpxSpIODL+ZLUnqMigkSV0GhSSpy6CQJHUZFJKkLoNCktRlUEiSugwKSVKXQSFJ6jIoJEldBoUkqcugkCR1GRSSpC6DQpLUZVBIkroMCklSl0EhSeoyKCRJXQaFJKnLoJAkdRkUkqQug0KS1GVQSJK6pgyKJCcl+XySbyVZn+S3Wv3dSf4qyQPt8fqRNpcl2ZjkoSTnjNTPSLKurbsqSVr9yCQ3t/o9SeaPtFmeZEN7LN+vey9JmtKsaWyzHfjtqvpqkhcD9ydZ09ZdWVX/dXTjJKcBy4BXAj8F/GmSl1XVDuAaYAXwFeDTwFLgDuBiYFtVnZpkGXAF8KYkxwKXA4uAaj/79qratm+7LUmarinPKKpqc1V9tS0/BXwLmNtpci5wU1U9U1UPAxuBxUlOBI6uqrurqoAbgPNG2qxuy7cCS9rZxjnAmqra2sJhDUO4SJIOkj26RtGmhF4N3NNK70jyjSSrksxutbnAoyPNNrXa3LY8ub5Lm6raDjwJHNfpa/K4ViRZm2Ttli1b9mSXJElTmHZQJHkR8MfAO6vq+wzTSC8FFgKbgQ9MbDqmeXXqe9tmZ6Hq2qpaVFWL5syZ09sNSdIemlZQJHk+Q0h8uKo+BlBVj1fVjqr6EfAhYHHbfBNw0kjzecBjrT5vTH2XNklmAccAWzt9SZIOkunc9RTgOuBbVfW7I/UTRzZ7I/DNtnw7sKzdyXQKsAC4t6o2A08lObP1eRFw20ibiTuazgfuatcxPgucnWR2m9o6u9UkSQfJdO56ei3wZmBdkgda7V3AhUkWMkwFPQK8DaCq1ie5BXiQ4Y6pS9odTwBvB64HjmK42+mOVr8OuDHJRoYziWWtr61J3gfc17Z7b1Vt3ZsdlSTtnSmDoqq+zPhrBZ/utFkJrBxTXwucPqb+NHDBbvpaBayaapySpAPDb2ZLkroMCklSl0EhSeoyKCRJXQaFJKnLoJAkdRkUkqQug0KS1GVQSJK6DApJUpdBIUnqMigkSV0GhSSpy6CQJHUZFJKkLoNCktRlUEiSugwKSVKXQSFJ6jIoJEldBoUkqcugkCR1GRSSpK4pgyLJSUk+n+RbSdYn+a1WPzbJmiQb2vPskTaXJdmY5KEk54zUz0iyrq27Kkla/cgkN7f6PUnmj7RZ3n7GhiTL9+veS5KmNJ0ziu3Ab1fVK4AzgUuSnAZcCtxZVQuAO9tr2rplwCuBpcDVSY5ofV0DrAAWtMfSVr8Y2FZVpwJXAle0vo4FLgdeAywGLh8NJEnSgTdlUFTV5qr6alt+CvgWMBc4F1jdNlsNnNeWzwVuqqpnquphYCOwOMmJwNFVdXdVFXDDpDYTfd0KLGlnG+cAa6pqa1VtA9awM1wkSQfBHl2jaFNCrwbuAU6oqs0whAnwkrbZXODRkWabWm1uW55c36VNVW0HngSO6/Q1eVwrkqxNsnbLli17skuSpClMOyiSvAj4Y+CdVfX93qZjatWp722bnYWqa6tqUVUtmjNnTmdokqQ9Na2gSPJ8hpD4cFV9rJUfb9NJtOcnWn0TcNJI83nAY60+b0x9lzZJZgHHAFs7fUmSDpLp3PUU4DrgW1X1uyOrbgcm7kJaDtw2Ul/W7mQ6heGi9b1teuqpJGe2Pi+a1Gair/OBu9p1jM8CZyeZ3S5in91qkqSDZNY0tnkt8GZgXZIHWu1dwPuBW5JcDHwXuACgqtYnuQV4kOGOqUuqakdr93bgeuAo4I72gCGIbkyykeFMYlnra2uS9wH3te3eW1Vb925XJUl7Y8qgqKovM/5aAcCS3bRZCawcU18LnD6m/jQtaMasWwWsmmqckqQDw29mS5K6DApJUpdBIUnqMigkSV0GhSSpy6CQJHUZFJKkLoNCktRlUEiSugwKSVKXQSFJ6jIoJEldBoUkqcugkCR1GRSSpC6DQpLUZVBIkroMCklSl0EhSeoyKCRJXQaFJKnLoJAkdRkUkqSuKYMiyaokTyT55kjt3Un+KskD7fH6kXWXJdmY5KEk54zUz0iyrq27Kkla/cgkN7f6PUnmj7RZnmRDeyzfb3stSZq26ZxRXA8sHVO/sqoWtsenAZKcBiwDXtnaXJ3kiLb9NcAKYEF7TPR5MbCtqk4FrgSuaH0dC1wOvAZYDFyeZPYe76EkaZ9MGRRV9UVg6zT7Oxe4qaqeqaqHgY3A4iQnAkdX1d1VVcANwHkjbVa35VuBJe1s4xxgTVVtraptwBrGB5Yk6QDal2sU70jyjTY1NfFJfy7w6Mg2m1ptblueXN+lTVVtB54Ejuv09SxJViRZm2Ttli1b9mGXJEmT7W1QXAO8FFgIbAY+0OoZs2116nvbZtdi1bVVtaiqFs2ZM6czbEnSntqroKiqx6tqR1X9CPgQwzUEGD71nzSy6TzgsVafN6a+S5sks4BjGKa6dteXJOkg2qugaNccJrwRmLgj6nZgWbuT6RSGi9b3VtVm4KkkZ7brDxcBt420mbij6XzgrnYd47PA2Ulmt6mts1tNknQQzZpqgyQfAc4Cjk+yieFOpLOSLGSYCnoEeBtAVa1PcgvwILAduKSqdrSu3s5wB9VRwB3tAXAdcGOSjQxnEstaX1uTvA+4r2333qqa7kV1SdJ+MmVQVNWFY8rXdbZfCawcU18LnD6m/jRwwW76WgWsmmqMkqQDx29mS5K6DApJUpdBIUnqMigkSV0GhSSpy6CQJHUZFJKkLoNCktRlUEiSugwKSVKXQSFJ6jIoJEldBoUkqcugkCR1GRSSpC6DQpLUZVBIkroMCklSl0EhSeoyKCRJXQaFJKnLoJAkdRkUkqSuKYMiyaokTyT55kjt2CRrkmxoz7NH1l2WZGOSh5KcM1I/I8m6tu6qJGn1I5Pc3Or3JJk/0mZ5+xkbkizfb3stSZq26ZxRXA8snVS7FLizqhYAd7bXJDkNWAa8srW5OskRrc01wApgQXtM9HkxsK2qTgWuBK5ofR0LXA68BlgMXD4aSJKkg2PKoKiqLwJbJ5XPBVa35dXAeSP1m6rqmap6GNgILE5yInB0Vd1dVQXcMKnNRF+3Akva2cY5wJqq2lpV24A1PDuwJEkH2N5eozihqjYDtOeXtPpc4NGR7Ta12ty2PLm+S5uq2g48CRzX6UuSdBDt74vZGVOrTn1v2+z6Q5MVSdYmWbtly5ZpDVSSND17GxSPt+kk2vMTrb4JOGlku3nAY60+b0x9lzZJZgHHMEx17a6vZ6mqa6tqUVUtmjNnzl7ukiRpnL0NituBibuQlgO3jdSXtTuZTmG4aH1vm556KsmZ7frDRZPaTPR1PnBXu47xWeDsJLPbReyzW02SdBDNmmqDJB8BzgKOT7KJ4U6k9wO3JLkY+C5wAUBVrU9yC/AgsB24pKp2tK7eznAH1VHAHe0BcB1wY5KNDGcSy1pfW5O8D7ivbffeqpp8UV2SdIBNGRRVdeFuVi3ZzfYrgZVj6muB08fUn6YFzZh1q4BVU41RknTg+M1sSVKXQSFJ6jIoJEldBoUkqcugkCR1GRSSpC6DQpLUZVBIkroMCklSl0EhSeoyKCRJXQaFJKnLoJAkdRkUkqQug0KS1GVQSJK6DApJUpdBIUnqMigkSV0GhSSpy6CQJHUZFJKkLoNCktS1T0GR5JEk65I8kGRtqx2bZE2SDe159sj2lyXZmOShJOeM1M9o/WxMclWStPqRSW5u9XuSzN+X8UqS9tz+OKP45apaWFWL2utLgTuragFwZ3tNktOAZcArgaXA1UmOaG2uAVYAC9pjaatfDGyrqlOBK4Er9sN4JUl74EBMPZ0LrG7Lq4HzRuo3VdUzVfUwsBFYnORE4OiquruqCrhhUpuJvm4FlkycbUiSDo59DYoCPpfk/iQrWu2EqtoM0J5f0upzgUdH2m5qtblteXJ9lzZVtR14EjhuH8csSdoDs/ax/Wur6rEkLwHWJPl2Z9txZwLVqffa7NrxEFIrAE4++eT+iKVD2PxLPzXTQ5hRj7z/DTM9BI2xT2cUVfVYe34C+DiwGHi8TSfRnp9om28CThppPg94rNXnjanv0ibJLOAYYOuYcVxbVYuqatGcOXP2ZZckSZPsdVAk+UdJXjyxDJwNfBO4HVjeNlsO3NaWbweWtTuZTmG4aH1vm556KsmZ7frDRZPaTPR1PnBXu44hSTpI9mXq6QTg4+3a8izgf1XVZ5LcB9yS5GLgu8AFAFW1PsktwIPAduCSqtrR+no7cD1wFHBHewBcB9yYZCPDmcSyfRivJGkv7HVQVNV3gFeNqX8PWLKbNiuBlWPqa4HTx9SfpgWNJGlm+M1sSVKXQSFJ6jIoJEldBoUkqcugkCR1GRSSpC6DQpLUZVBIkroMCklSl0EhSeoyKCRJXQaFJKnLoJAkdRkUkqQug0KS1GVQSJK6DApJUpdBIUnqMigkSV0GhSSpy6CQJHUZFJKkLoNCktRlUEiSug6LoEiyNMlDSTYmuXSmxyNJP04O+aBIcgTwB8DrgNOAC5OcNrOjkqQfH4d8UACLgY1V9Z2q+nvgJuDcGR6TJP3YSFXN9Bi6kpwPLK2qX2+v3wy8pqreMbLNCmBFe/kzwEMHfaD7z/HAX8/0IA5jHr994/HbN4fz8fvpqpozbsWsgz2SvZAxtV3SraquBa49OMM5sJKsrapFMz2Ow5XHb994/PbNc/X4HQ5TT5uAk0ZezwMem6GxSNKPncMhKO4DFiQ5JclPAMuA22d4TJL0Y+OQn3qqqu1J3gF8FjgCWFVV62d4WAfSc2IKbQZ5/PaNx2/fPCeP3yF/MVuSNLMOh6knSdIMMigkSV0GxTQk+UKScybV3pnk6pka03NRkh9Mev2WJB+cos0/bJPkN5Jc1JZfnuSBJF9L8tIDN+qDJ8mOtk8Tj2f9OZskZyX55AEex1lJfv5A/oyZkmRektuSbEjyF0l+P8lPJFmY5PUj2z1nj8E4BsX0fIThbqtRy1r9sJLkkL+BYW9V1R9W1Q3t5XnAbVX16qr6ixkc1v70d1W1cOTx/hkax1nAc+4fySQBPgZ8oqoWAC8DXgSsBBYCrx/Z/Cyeg8dgt6rKxxQP4DhgC3Bkez0f+C5wDbAWWA+8Z2T7R4D3AF8F1gEvb/UXAf+j1b4B/MtWv7DVvglcMdLPD0aWzweuB45p/T+v1V8IPAo8H3gp8BngfuBLIz/3euB3gc8DH5jp49k5zj+Y9PotwAfb8j8H7gG+BvwpcMKYbd4N/A7DL/T/Bf4K+Hxb94l2XNYDK1rtp4ENDN+mfV47ZmfP9HGY7vEZqS8Fvg18GbgK+OTI8VgNfK69Z/4F8J/be+0zwPPbdkvacV0HrBp5nz/rfdze+xPH9gHgF9pxvLO9p+8ETh55310F/BnwHeD8mT6GUxzfJcAXJ9WOBrYBTzD8G/AA8B/GHIPdvT/XAT/J8MXh7wEXtfqNwK+04/mldoy/Cvz8TB+HscdmpgdwuDyATwHntuVLgf8CHNteHwF8AfjZ9voR4N+25X8D/FFbvgL4vZE+ZwM/xRA6cxhuV74LOK+tf1ZQtOXbgF9uy28a6f9OYEFbfg1wV1u+HvgkcMRMH8cpjvGO9os38fguO0NgNjvv0vt1WuAxJigmL7fXE/+tjmII5ONG+roV+PfAf5/pY7CHx+dNwAsYPigsaP8Y3cKuQfFlhg8RrwL+FnhdW/dxhrOuifYva/UbgHdO8T6efGz/BFjeln+N4RP5xPvuowwhfBrD32yb8ePYOb6/CVw5pv61tu6DI7XJx2B3788/BN4AnM7wnbAPtfoGhg+OLwRe0GoLgLUzfRzGPZ6z0xAHwMT0023t+deAf9X+ztQs4ESGX4ZvtO0/1p7vZ/gkB8MniH+YwqqqbUl+EfhCVW0BSPJh4BcZPgHvzs0M/0h8vvV3dZIXMZwKf3Q4gwbgyJE2H62qHXu2ywfd31XVwokXSd4CTPw5hHnAzUlOBH4CeHgP+/7NJG9syycx/FJ+r6r+KMkFwG8wTC8cynY5PgBJFgIPV9WG9vp/svPvngHcUVU/TLKO4QPNZ1p9HcOn2Z9p7f+81VcDlwC/116Pex9P9nMj625kOGuZ8Imq+hHwYJITprWXMydM+vNAU9RH7e79+SWG3+e/ZJiBWJFkLrC1qn6Q5Bjgg+2/4w6G6a5Djtcopu8TwJIk/4ThU+k2hmmOJVX1swxnHC8Y2f6Z9ryDnV9sHPeGG/e3rCaMbjva9+3A65IcC5zBcBbyPOBvatc57FeMtPl/U+zfoe6/MXyi+8fA29j1eHQlOYshpH+uql7F8AnxBW3dCxl+yWH4hHc46v0j9gxA+8f6h9U+ugI/Ynhf9t5//9CeXd/HezKeZ0aWp/pZM209Oz+YAJDkaIYPFlN9yNrd+/OLDFNTv8Aw67CFYXbgS239vwMeZzjjW8QQMoccg2KaquoHDP+hVzGcXRzN8I/vk+2T0uum0c3ngNG/ejubYV7zl5Ic3/7fGxcC/7tt8niSVyR5HjDxaXhiLPcCv88wzbCjqr4PPNw+HZPBq/Zlnw8xxzDMCQMs34u226rqb5O8HDhzZN0VwIeB/wh8aJ9HefB9Gzhl5M6uC/ei/fwkp7bXb2bn+293ngJePPL6z9h5pvyrDNNdh6M7gReO3Dl3BPABhim0x9l1nycfg7Hvz6p6lOEa2IKq+g7DsfkddgbFMcDmFuRvZjjrO+QYFHvmIwzJf1NVfZ3hk+l6hvD4P9No/5+A2Um+meTrDNcZNgOXMUwjfR34alXd1ra/lOHawl3A5kl93Qz86/Y84VeBi1vf63lu/X873s0wrfYl9vzPOH8GmJXkG8D7gK8AJPkl4J8y3EDwYeDvk7x1/w15vztq0u2x76+qpxmmmj6V5MsMUxzT1tq/leHYrmM40/jDKZr9CfDGNoZfYJi/f2s7vm8GfmsP9+uQ0M623ghckGQD8OfA08C7GH4/T2v7/CaefQzeze7fn/e0vmAIiLnsDNOrgeVJvsIw7XRInvn7JzwkSV2eUUiSugwKSVKXQSFJ6jIoJEldBoUkqcugkCR1GRSSpK7/D0ScXWHRvSKgAAAAAElFTkSuQmCC\n",
475
      "text/plain": [
Sarah Heidekorn's avatar
Sarah Heidekorn committed
476
       "<Figure size 432x288 with 1 Axes>"
477
478
479
480
481
482
483
484
485
486
487
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "devdens = {'region':['Vancouver', 'Halifax', 'Edmonton', 'Ottawa'],\n",
    "           'Δ density': [316130.09, 299203.41, 49647.97, 322071.36],\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
488
    "           'percent': [0.998, 1.0, 1.0, 0.991]}\n",
489
490
491
    "dev_density = pd.DataFrame(devdens)\n",
    "\n",
    "display (dev_density)\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
492
493
494
495
496
    "\n",
    "plt.figure()\n",
    "x = dev_density['region']\n",
    "y = dev_density['Δ density']\n",
    "plt.bar(x,y)\n",
497
498
499
500
501
502
503
504
    "\n",
    "#one way to calculate these values is:\n",
    "#display(df_density)\n",
    "#EdDiff = 49647.97 -  0.00\n",
    "#EdPerc = EdDiff/49647.97\n",
    "#display(EdDiff, EdPerc)"
   ]
  },
505
506
  {
   "cell_type": "markdown",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
507
   "id": "coated-acrylic",
508
509
   "metadata": {},
   "source": [
Sarah Heidekorn's avatar
Sarah Heidekorn committed
510
    "#### Above you can see the Δ density and percentual-values in numbers as well as figures. You can notice that the development for ALL regions was very good as the minimum percentuage of growth in density is in Ottawa with 99.143%.\n",
511
    "\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
512
    "A usual Edmonton shows the lowest values and Ottawa the highest. This is due to their overall development, yet it should be noted that the Δ density-values for Vancouver get really close to those of Ottawa and the starting values weren't much lower either which implies a very similar overall development overall the whole timespan.\n",
513
514
515
516
517
518
519
520
    "\n",
    "**Δ Density Ranking:**\n",
    "1. Ottawa\n",
    "2. Vancouver\n",
    "3. Halifax\n",
    "4. Edmonton\n",
    "\n",
    "_side note: The percentage-values aren't shown in a figure as they are all very similar and differences were hard to make out with the eyes only_"
521
522
   ]
  },
Sarah Heidekorn's avatar
Sarah Heidekorn committed
523
524
525
526
527
  {
   "cell_type": "markdown",
   "id": "therapeutic-allen",
   "metadata": {},
   "source": [
528
    "## **Analysis Part 2 - Users**"
Sarah Heidekorn's avatar
Sarah Heidekorn committed
529
530
531
532
   ]
  },
  {
   "cell_type": "code",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
533
   "execution_count": 6,
Sarah Heidekorn's avatar
Sarah Heidekorn committed
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
   "id": "middle-fisher",
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'https://api.ohsome.org/v1/users/count/groupBy/boundary'"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
Sarah Heidekorn's avatar
Sarah Heidekorn committed
550
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAJ0CAYAAADK/Y2sAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdeXiU1fXA8e/Nvu+BAAHCvgkECOICirt1RYW6YN1rra3aWlu7+GttbautWltt1VqrthU3UFFw31hlS1gFwhJIIATIvu/J/f1x553MJDPJJJnJAufzPPMk887MO3cuQ+bMveeeq7TWCCGEEEII7/Pr7QYIIYQQQpyoJNASQgghhPARCbSEEEIIIXxEAi0hhBBCCB+RQEsIIYQQwkck0BJCCCGE8JGAnnqihIQEnZKS0lNPJ4QQQgjRZRkZGYVa68TunqfHAq2UlBTS09N76umEEEIIIbpMKZXjjfPI1KEQQgghhI90GGgppaYppdYqpVYppb5USo1USs1VSh1VSq2wXWb0RGOFEEIIIfoTT6YOjwIXa60rlFKXAL8F/g18oLW+w6etE0IIIYToxzoMtLTWxxyu1gONtt8vUkqtBrYCP9Na13i/eUIIIYQAaGhoIDc3l9ra2t5uygklJCSE5ORkAgMDfXJ+5emm0kqpcOBL4FbgMNCgta5VSv0BqNVaP+LiMXcCdwIMGzZsRk6OV/LKhBBCiJPOwYMHiYyMJD4+HqVUbzfnhKC1pqioiIqKCkaMGOF0m1IqQ2ud1t3n8CgZXikVCLwJPKq13qW1rtBaWyH1IsBlQ7TWL2it07TWaYmJ3V4hKYQQQpy0amtrJcjyMqUU8fHxPh0l9CQZ3g94FViqtV5qOxbtcJdzgT0+aZ0QQggh7CTI8j5f96knI1pXA5cCN9pWGD4DLFRKpSulVmECrT/6spFCCCGE6H3+/v6kpqbaL4899lib+6xYsYLLLrvMp+1YsWIFX3/9tU+fw1s8SYZfAixxcdOz3m+OEEIIIfqq0NBQtm7d2tvNYMWKFURERHDGGWf0dlM6JAVLhRBCCNEtH3/8MePHj2f27Nm888479uMPP/wwN998MxdeeCEpKSm88847/OxnP2Py5MlcfPHFNDQ0APDFF18wbdo0Jk+ezG233UZdXR1gdpX5zW9+w/Tp05k8eTKZmZlkZ2fz/PPP89RTT5Gamsrq1avJycnhvPPOY8qUKZx33nkcOnQIgFtuuYV7772XM844g5EjR7JkiatxI9/qsS14hBBCCOEdv122k1155V4958TBUfzm8knt3qempobU1FT79V/84hdceeWVfPe73+XLL79k9OjRXHvttU6PycrK4quvvmLXrl2cfvrpvP322/z5z3/mqquu4oMPPuDiiy/mlltu4YsvvmDs2LHcdNNNPPfcc/zoRz8CICEhgc2bN/Pss8/yxBNP8OKLL3LXXXcRERHBAw88AMDll1/OTTfdxM0338xLL73Evffey9KlSwE4evQoa9asITMzkyuuuIL58+d7rc88ISNaQgghhPCINXVoXa699loyMzMZMWIEY8aMQSnFjTfe6PSYb33rWwQGBjJ58mSampq4+OKLAZg8eTLZ2dns2bOHESNGMHbsWABuvvlmVq1aZX/81VdfDcCMGTPIzs522a5169Zxww03APCd73yHNWvW2G+bN28efn5+TJw4kePHj3utLzwlI1pCCCFEP9PRyFNPa2/lXnBwMAB+fn4EBgba7+vn50djYyMd1fO0Hu/v709jY2O793XVHuvxQIfP5QsyoiWEEEKILhs/fjwHDx4kKysLgNdff73Tj8/Ozmb//v0A/O9//+Pss89u9zGRkZFUVFTYr59xxhm88cYbACxatIjZs2d3qg2+JIGWEEIIITxi5WhZl5///OeEhITwwgsvcOmllzJ79myGDx/eqXOGhITw8ssvs2DBAiZPnoyfnx933XVXu4+5/PLLeffdd+3J8E8//TQvv/wyU6ZM4X//+x9/+9vfuvMyvcrjLXi6Ky0tTaenp/fIcwkhhBAnmt27dzNhwoTebsYJyVXf9ugWPEIIIYQQovMk0BJCCCGE8BEJtIQQQgghfEQCLSGEEKKf6I3yBCc6X/epBFpCCCFEPxASEkJRUZEEW16ktaaoqIiQkBCfPYcULBVCCCH6geTkZHJzcykoKOjtppxQQkJCSE5O9tn5JdASQggh+oHAwEBGjBjR280QnSRTh0IIIYQQPtJhoKWUmqaUWquUWqWU+lIpNVIZzyilViulliul4nqisUIIIYQQ/YknI1pHgYu11mcBTwC/BS4CwrTWc4C3gJ/5rolCCCGEEP1Th4GW1vqY1traubEeaATmAsttx5YBZ/mkdUIIIYQQ/ZjHOVpKqXDgD8DjQBxQYrup1Hbd1WPuVEqlK6XSZZWEEEIIIU42HgVaSqlA4E3gUa31LqAYiLHdHE1L0OVEa/2C1jpNa52WmJjoheYKIYQQQvQfniTD+wGvAku11ktth1cCl9h+v8R2XQghhBBCOPCkjtbVwKXAQKXUjcAO4D7gMqXUaqAcuMl3TRRCCCGE6J86DLS01kuAJS5u+oH3myOEEEIIceKQgqVCCCGEED4igZYQQgghhI9IoCWEEEII4SMSaAkhhBBC+IgEWkIIIYQQPiKBlhBCCCGEj0igJYQQQgjhIxJoCSGEEEL4iARaQgghhBA+IoGWEEIIIYSPSKAlhBBCCOEjEmgJIYQQQviIBFpCCCGEED4igZYQQgghhI9IoCWEEEII4SMSaAkhhBBC+EiHgZZS6hOlVIFS6iHb9blKqaNKqRW2ywzfN1MIIYQQov8J8OA+twPnA8kOxz7QWt/hmyYJIYQQQpwYOhzR0lrnujh8kVJqtVLqGaVUqA/aJYQQQgjR73UlRysDGKO1ngOUAw+4u6NS6k6lVLpSKr2goKCrbRRCCCGE6Jc6HWhprSu01rW2q4uAtHbu+4LWOk1rnZaYmNjVNgohhBBC9EudDrSUUtEOV88F9nivOUIIIYQQJ44Ok+GVUv8CzgCClVJpwKdKqduAaqAQuM23TRRCCCGE6J86DLS01t91cfhZH7RFCCGEEOKEIgVLhRBCCCF8RAItIYQQQggfkUBLCCGEEMJHJNASQgghhPARCbSEEEIIIXxEAi0hhBBCCB+RQEsIIYQQwkck0BJCCCGE8BEJtIQQQgghfEQCLSGEEEIIH5FASwghhBDCRyTQEkIIIYTwEQm0hBBCCCF8RAItIYQQQggfkUBLCCGEEMJHJNASQgghhPCRDgMtpdQnSqkCpdRDtutKKfWMUmq1Umq5UirO980UQgghhOh/PBnRuh34qcP1i4AwrfUc4C3gZ75omBBCCCFEf9dhoKW1zm11aC6w3Pb7MuAsL7dJCCGEEOKE0JUcrTigxPZ7qe26S0qpO5VS6Uqp9IKCgi48lRBCCCFE/9WVQKsYiLH9Hk1L0NWG1voFrXWa1jotMTGxC08lhBBCCNF/dSXQWglcYvv9Ett1IYQQQgjRSkBHd1BK/Qs4AwhWSqUBVwOXKaVWA+XATb5tohBCCCFE/9RhoKW1/q6Lwz/wQVuEEEIIIU4oUrBUCCGEEMJHJNASQgghhPARCbSEEEIIIXxEAi0hhBBCCB+RQEsIIYQQwkck0BJCCCGE8BEJtIQQQgghfEQCLSGEEEIIH5FASwghxEktPbuYef9YS3V9Y283RZyAJNASQghxUntnyxG2Hi5lR25ZbzdFnIAk0BJCCHFSW3+gCIBdR8t7uSXiRCSBlhBCiJPW8fJaDhRUAbAzTwIt4X0SaAkhhDhpWaNZAyKD2SWB1gmtsq6xV/LwJNASQghx0lp/oIjI4ACumjaEffkV1Dc293aThI/c9somvve/jB5/Xgm0hBBCnLTWHyjm1BFxnDIkmoYmzb78it5ukvCB8toG0rOLWb2vkENF1T363N0KtJRSNUqpFbbL7d5qlBBCCOFrx8pqOVhYxemj4pk4OApApg9PUJsOFtOsze9LNuf26HN3d0TriNZ6ru3yb6+0SAghhOgB6w4UAnDayHhS4sMJC/KXhPgT1PoDRQT5+3HqiDjezsil2Yq6ekB3A60kpdRKpdQ7SqkUbzRICCHEyeVQUTVf7y/06jm11izblkdVnfvk5/VZxUSFBDBhUBT+forxSZFtSjw0NDXz7pZcGpo6zt3Kr6hlxZ58j9q3M6+MPcd6b5ryWFktX2d1v8/3Ha/gmyOdrz9WXtvAsm15aN0zAc+6A0VMGxbDjacN50hpDetsiyB6QncDrRSt9dnAP4E2I1pKqTuVUulKqfSCgoJuPpUQQogT0a+W7uC2/2yirrHJa+f8OquIe17fwmsbDrm9z7oDRcwaGY+/nwJg0uBodueVO412vLvlCD9+cxtvZ3Q83fT0F/u47ZVNVLYT3AE0NjVz68ubmP/81z2eL2T56ZJtLHxxA6v3df2z+XBxNdc89zW3vLzRo0DU0bNfZXHP61tIzynp8vN7qqymgZ155Zw+Kp4LJw4kMiSAxemHff68lm4FWlrrQtvPT4DhLm5/QWudprVOS0xM7M5TCSGEOAHlldawZn8htQ3NbD1U6rXzWh+k7kYujpTWcKi4mtNGxtuPTRwcRUVdI7klNfZjS9JNgLXYg0Dr66wimjVkdlD4dNW+AvIr6qiub+Lu1zKobfBegOkJq8/9lOJHb2zlWFltp89R19jED1/bTFV9E4WV9azY43nA1tjUzDu2PKmeCHg2HixGazNFHBLozxVTB/PRN8cor23w+XNDNwItpVSEUsrf9vsUwLvjvkIIIU5472zORWtQyqwA9Iby2gY++uYYfsokQTe6GG1Zn2UCsNMdAq1JtoT4nXlmKiy7sIqN2cUMjQslI6eErIJKt8+Z34nCp4vTc4kPD+Lv10/jmyPl/OGD3Z17gd1k9fmLN6dR09DEPa9vdtlH7Xn0w0y25Zbx9HXTSIgI7lTAtHpfIfkVdQyNC+WD7Ud9XttqXVYRwQF+pA6NAWBB2lDqGptZvu2oT5/X0p0RrYlAulJqFfAM8D3vNEkIIcTJQGvNkoxcZo2IY+KgKHtyenct33aUusZmbjtzBBV1jS4Dn3UHiogJC2R8UqT92NiBkfj7KXue1pKMXPwU/OOG6fj7qXanD62RM6XaX7lYXFXP57uPc2XqEL41eRB3njWS/63PYdm2vK6+3E5x7PNzxg3g0asnsym7hCc+3evxOT7YfpRXvs7m9tkjuHTKIK6aNpgvM/MprKzz6PGLMw4TFx7En66eQlV9Ex/uONbVl+OR9QeKmD4slpBAfwCmJkczZkAEizN6Zvqwy4GW1nqj1nqa1vosrfXZWutt3myYEK3tO17Bz5Zs82oeh+i6oso67n9zK8VV9b3dFNFLth0u5dfvfdPlFVybskvILqpmQdpQTh8Zz+ZDpe1Oo2mteeaLfXy263i7512ccZgxAyK48+yRQNvpQ60167KKmDUiDj9bfhZASKA/oxMj2JVXTlOz5u3NucwZk8iU5BjOHpvIO5uP0OTmta4/UERkSACnjYhvd8/E97YeoaFJsyAtGYCfXjSOGcNj+fnb2zngYsSstqGJX727g4ycjkf7sgoqeWjpDiramRJz7HOAK1OHcMOsYTy/MosvM9vvVzCjfA++vZ3UoTE8ePF4wIwQNTZrlm454nTfrzLz+f3yXU59VlJVz+e78rkydTCnj4pnREK4T6cPS6vr2X3M5GdZlFIsSEtmy6HSHinnIQVLRb/x7Ios3krP5dOdHf8xEL73+sZDvLPlCB990zPD76Lv+d/6HP67LqfLK7gWpx8mPMifSyYncdrIeOobm9nSTp7W/9bn8ORne3n4/Z1ug7v9+RVsOVTKgrRkBkSGMCox3L7NjmXr4VKOlNZwzrgBbR4/cXAUO/PK+TqrkKNltfaAaMGMZI6V17pNHl9/oJhZI+KYnBzNnmMVbpPDl2TkcsqQKCYMMtOUgf5+PHP9NIIC/Lh70eY2geZv3tvJog2H+N7/Msgvd59LVVXXyPf+l8Gr6w/xbquAx5Fjn1t+fdlEJg6K4sdvbiO3xH1yfm1DE3cv2kyAv+IfC6cTFGBCiLEDI5maHM2SjFz7KsL9+RX84LXNvLjmIH/7Yp/9HO9tPUJ9UzMLZgxFKcX8GclsOFjss0UBG2z5WY6BFsA105OJDQvk/re2UlPv2y/vEmiJfqGitsH+ge5JUqrwLWv6AbyXVyP6HyuA6cqIRFVdIx/sOMqlUwYRFhTAqSPj8FO0CYos2w6X8sjyXQyKDuFIaY3b+y3JOIK/n2LetCGA+YDddLDYKfBZnJFLSKAfl04Z1ObxEwdFcay8lhdWHSAqJIDzJwwE4NwJA4gJC3T598cqfHrayHgmDY6ivqnZZT7XrrxyduaVs2DGUKfjg2NCeeraVDKPVfCb93baj7+dkcub6Ye5evoQquqauOf1LS5zqbTW/OrdHWQVVDIgMpjF6a7/Rrbuc0tIoD/PLpxOU7Pmh69tcbsN0W+X7WLX0XL+8u2pDIkJdbptftpQMo9V8M2RcqrrG7l70WZCA/351ilJPPPlPlbtNQHq4oxcJg2OsheIvWraEJTyXRHRdVlFhAT6MSU52ul4fESwvc8ffn+nm0d7hwRaol/4YPtRahuaOWtsImv2FXRplYzwHmv6ISYskHVZRT1WC0f0HYeLq8ktqSEmLJCPd3Z+BddH3xyjur7JPoUVFRLIKUOiXY6OlVU38IPXNpMYEcy7d59JZEiAPdB3ZK1mO2dcIgMiQwA4fWQCVfVN9lpPtQ1NLNuWx7dOGURkSGCbc1gJ8av3FXJl6hB7Xk9wgD/zUofw2c7jlFU7v1Yr6DttZDwTbSNVO4+0nZJanHGYIH8/rkwd3Oa2ueMG8INzRvFm+mGWZOSy93gFDy39htNGxvHna6bwh6tOYcPBYp76vG0u1RubDrN0ax4/Om8sd509ih1Hysg81vb5W/e5o5SEcP48fwpbD5fy2EeZbW5fuuUIr288xF1nj+Lc8QPb3H7FlMEEBfixJOMw/7d0J/vyK/nrdan85dupjB0QyY/e3MpXe/JtgWay/XGDY0KZPTrBZ0VE1x8oIm14HMEB/m1umztuAD88ZzRvph/2qHxHV0mgJfqFxRm5jB4QwSNXTqJZw9s9vIWCcLY4/TARwQHcd94YCivr2l2NJU5MVkD0q0smUNvQzAfb259C1lrT3NxyWZx+mBEJ4aQNj7Xf57SR8WxtlaelteaBJds4VlbL3xdOJyk6hMunDubDb462yUWyVrPNdxgxmjUyzqm9n+w8RkVto9OHvSNrpAWwTxta5s9Ipr6pmfe3OU/Nrcsqshc+HZEQTnCAX5s8rfrGZt7bmscFEwcSExbk8rl/fP5YZo2I46GlO7jzv+mEBwfw9HXTCPD34+rpyVw3cyj/+CqLrzLz7f24M6+M37y/kzljEvjhuaOZN20Igf7KXpbCkas+d3TJ5EHcckYKL609yMffHLU/x77jFfzy3R2cmhLHAxeOdfnY6LBALpqUxGsbD/H25lzuOXcMc8YkEhrkzz8WTqe2oYk7/5tuCzSHOD12QdrQbhURdfdFr7iqnsxjFZxmew+48qPzx9j6/Bv2HKtweo96iwRaolfll9dy2h+/YOVe9zVYsgoqycgpYcGMZIbHh3PqiDinXADhO1/tyefsx79iv8NGu/bph8mDOHe8yXFZ1wvTh4eLqzn3iRV8uKPtB7zWmmue+5q/fb7PxSPb98+VWXz7+XUe3fc7/97ATxdvO6Hfi098sodr/7muzWtcf6CIuPAgrpmezNiBEe1OHzY1a+78XwYjf/mh/bLhYDHzZySjVEsy+ukj46lvamazQxHLf685yGe7jvOLSyYwfZgJEBbMSG4T3DU3a15cc4C48CD7+xIgISKYsQMj7FPcSzJyGRIT6lQ/y1FMWBBDYkIZNzCSyUOcp5tOGRLNhEFR/GddjlMw6Fj4NMDfj/GDouwlIixfZh6nuKqe+WmuAzyAAFu+VkRwADnF1Tx9XSoDokLstz98xSTGJ0Vy6yub7P146dNriA0L5KlrU/H3U8SFB3He+IEs3XrEabp02+FSl33e2i8vmcDUoTHc9epm+3Nc8NQqQgP9efp6E/S5s2BGMg1NmjNGxXPfeWPsx0cPiODRqyfT0KQ5f+IAYsOdA80LJw4kqp0ioo99lMn1L6x3uVDi71/u4/y/rCS/ou0sxwe2vw2t87McWX0eHuzPRX9d5fQe9ZaAju8ihO8s2ZzLsfJaXl57kLPHui5quyQjF38/xVW2nIsFM5L56ZLtZOSUkJbi/puK6L5/rTpATlE1dy/azNIfnElYUIB9+mF+WjLD4sIYFB3C+qwivnNam5rFPlPX2MQPXtvMgcIq/rkyi0smO+fabMouISOnhIOFVXx/7ih70q4n3tuax66j5RwurmZoXJjb+xVV1rF6nylHMHWo2drjRFPb0MR/1mVTUdvIttwyex0irTXrs4o4baRZtTd/RjJ//DCT/fmVjB4Q0eY8f/t8L5/tOs7CWcPsU3pBAX7ceNowp/ulpcTi76dYf6CIM0YnkJFTzGMfZXLRpIHcdmaK/X6pQ2MYPSCCxRm5XHeqOcdzK7NYu7+IR+ad0ubf+7SR8SzJyOVQUTVr9hdyz7ljnFYbtvbUtalEBAe4DEh+dvE4bn15E79dtotHr55sL3x68xkt7Zs4KIoPtpvtZaxzLE7PZWBUMGeNab9494CoEF7/7mnkldVyxugEp9tCAv155dZTeXtzLo1NJvBVyoxEJUQE2+83f0YyH+88xleZ+Vw4Kck+9To4OoSFs5z7vLWgAD9evCmNxRmHaWhsCa4vPiWJpOiQdh4Jc8Yk8I8bpnPm6JZq+5YrU4cQFhTA1Fa5UtbruiJ1MIvTc/ldbQNRDlO6lXWN/OfrbGoamux9bvlqT769LMV9r2/l1Ttm2Z937/EK/vDBLmaNiGPaUNcjeBarzz/65hiO3yd+9Kd2H+YxCbREr9Fa24e3V+01eVet/yM3NWve2ZzL2WMT7d/sLpk8iN+8v5PF6bkSaPnQ4eJqvs4q4uyxiazaV8BDS7/hyQVTnaYflFKcPjKelXsLnD5UfO2PH+xme24Zc8clsmJPAXuPVzB2YEs9JOubcXFVPV9mHufiU9omPbtiLQUHM0rRXqC14aAZIRmZGM7vlu0idWgMpwxp+yHSn1nTbGD61Aq0DhfXkFdWy/dto0Lzpg3hTx/vYUlGLj//1ninc6zcW8AzX+3n22nJ/OGqybQn0iFPq7iqnh++toVBMSH8ef5Up/eWUooFM5J59KNMsgoqKaio48lP93DZlEHc6CKQOH1kPP9dl8Nv3v8GrXE7bWg5dYT7vyvnjBvA9+eO4rkVWcwaEWcvXdC68OnrGw+RW1LD0Lgwswfi3gLuPGtkmwDElTEDIxnj8H52lBQdwg/OGd3u4+eOSzRFRDNyuWDiQPvU61t3ne522tJRYmQwd89t/zlcUUq5XGBguWBi29wuy/wZQ3l1/SGWbzvKDQ7/hh9sz6OmoYlzxiXy+sZDzBoRx7xpQ8grreHHb25lwqAoFs4axkNLv+Fvn+/l/gvHUVVnkvEjggN45vpp7QbVFld9/qOOX7JHZOpQ9JrNh0o4UFjF3XNH0azhnS1tcwpW7SvgeHmd0x/G8OAALp08iOXb83xeUfhk9vbmXJSCP149mXvOHcM7m4/wl8/2tpl+OG1kPEVV9ezL75k8reXb8/jPuhxunz2CJxdMJcBPOU05WFOb10xPZmCU+xVYrlhLwZVqqRzuzrqsIsKC/Hnju6cRHxHE3Ys299iWHj3Fmma7MnUw72/Ls0/dWIVFrSmZAZEhnDMukXc25zqtijtaZj4Mxw6I5LdXnOLRc542Mo6th0u5740tFFXW8+wNM4gObZu0ftW0Ifj7KV5YeYB7X99CSnw4j10zxWWwP8sWBH21p4DTRsa1G0B74icXjOXUlDh++e4O3ko/3KbwqZXnZeVpvWurvzW/gwDPW0xO1xC+ysznz5/saTP12hdZRUSXtCoiujg9l5GJ4bxwU5q9z3cfLecHr22msUnzjxumceNpw1kwI5lnvtrPyr0F9hWYT183zWnqtbdIoCV6zeL0XEID/bn7nNGcmhLHkvS2eVdL0nOJDQvkvAnO34QWpA2lqr6J51dksWJPPiv25JORU+I2VybzWLn9fiv25LssDOhKfnktRW6qHZfVNHCktMblbZ1RVFnn9jk640hpTZvVUO5sO1zq1B85RVVOtzc3m/INZ4yKZ0hMKPedN4YzRsXzzJf7UQqunt6SzGp92Lpbbt+RpmbtNplea81Wh7Z+tOMoP397B9OGmWKJ8RHBnDt+AO9uybPno1hTm9edOpSrpyezYm9Bm/yNsuoGl4VW1x8wS8HPGz+A9QfaX025/kARaSlxDIgK4e83TCOvtIb739zm1K+u8kb6iyO2/fCumZHMtWlDqaht5JOdpoL3+gPFJEQEMyqxZZpw/oyh5FfU8dLag/bXf89rW6hraOLZG6cTGtR21Zcrp4+Mp6FJs3pfIf93+UQmu5hqAjPdc/bYRN5MP0xZTQP/WDidiGDXkzRx4UH2QKh1aYWuCPD34+nrpxEa6M+Gg8VtCp9OSIrCz1Yh3iqFMn1YjFN/+dr8Gck0NmueW5HVZuq1L7KKiG4+VMp+25e2g4VVpOeUsGDGUAId+nzeP9ay5VApj10zmZG2Pv3dlacwdkAkd/43naVb8/jx+WPbTL32Fpk6FL2iur6R5duPcsnkQUQEBzA/LZmfLdnO5kMlzBhuhu23HCrhk53HuOn0lDY5FzNTYhmZGM7TX+53Ov7Ti8a1GVb/dOcx7vxfhtOxAD/Fm987nRluVt+A+ZBf+OIGIkMCeOfuM9vc/tPF29h8qJSvf35up3KAHBVX1XP5M2to0poP751DvEOeRWc0NDVz9bNrmTwkmhdvntnufb85UsaV/1jrdCzI34937j7DPvW1/mARuSU1PHDhOAD8/RR/u24alz2zmslDYhgU3VJDJzk2lCExoazLKuKm01M63fbfLdvJf9bl8NS1U7lqmvM3/v+tz+HX7znXuIkNC+TvN7QUS1yQNpRPdx1n5Z4Czp840GlqMz48iOdWZPHu5iN87+xRgOnzy55eTWx4EMvvme00ArIuq4gZw2M5a2win+/O51BxNcPjw9u0uaCijn35lVw93bR3xvA4fv6t8fz+g918vruloG58eBAf3jeHgX3gW3VnvZORa59mGxITSnJsKEsycrli6mDW2fKzHPvu3PEDSIwM5o8fOpcG+Nt1qZ0KMNJS4ggL8ue8CQNdTgM6WjhrGF9m5vPIlafYC4C6c/a4RI6W1fIth0Kd3ZEUHcJfr0vl5pc2clar/NLQIH9GJISzM6+cbbll7MuvdMot6gljB0Zyakocxytq20y99lWtp6CXZBzGz+GLnWOf33z6cC6b0lImIzTIn2dvnM6Vf1/LqSPiOpxe7UkSaIle8fE3x6isa7Qvn7508iAetuVdzRgeR2m1yc9Iig5xWr1iUUrx1vdO51BxSzXhF1cf4MlP9zBjeKx9RdGhomp+sngbk4dE8/AVk1DKjNbc/9Y2fvjaZj64dw5x4a5zFjYfKrFPh+07XuE0f19QUccXmfk0NWu+zMzn4lM6/8fbtGMrhZX1oOBHb27lP7ee6lE+QWsr9pgp1oKKfI6X17b7wb44/TBBAX7897ZTCQrwo7FJc98bW7h70WaW3zubqJBAlqTnEhkcwEWTWl5XYmQwX/5kLn6t/mArpThtZDxfZh6nuVl3qv3WNGBkSAC/fOcbThkcbe9nq0DlOeMSucfhPZASH+70b2byUYJYnHGYsQMj2XCwmJ9eNA6lFCMTI5gxPJbFGbncedZItIb739pKXlkteWW1fHOk3D5iUmJbCv7AhWPt+TbrDxS5DLQ2HLTqJrXk8twxZyRnjU2kss5MZ5dW1/ODRVu45/UtvHbHrHZXa/U1WmuWbM51mma7ZnoyT3+5j3VZRRwrr22zai8owI/l98x2GuWNDQtiRELb/mtPRHAAX/zkbBIjgjsMDs6bMJCMh8736AvK/ReM5Y7ZI50KdXbXnDGJrHnwXJf/3yYOjmZzTgmL0w8TEujHZe3kLvnKy7fOxN9P2WuB9XWOU9D3XzCWtzOOcPbYRKf+nTMmkfW/PI9EF//moxIjWPnTuUSFBnqUC9dT+s//fHFCWZKRy7C4MGbZkk7DgwP41imDWL79KFV1jfzkrW3kV9TyjxumEx3WNj8DzLLt6cNi7Zc/z59KSnw4976+hYKKOvvKNIBnF05nxnBzv7SUOJ5dOJ2iynruf2ur23op1tRmgJ9qUxxx6RaTcxEZHNAmp8BTz63MYsWeAv7v8ok8fPkkVu8r5B9f7e/4gS4syThMZHAAzZp2t9+oa2zivW15XDhxIKeNjGf6sFhOHRFnn/r62eLtVNQ28OE3R7ls6uA20z3hwQEup4BOGxlHSXUDex3KQHTkQEElP397B9OHxfDRfXMIC/Ln7kWbqa5vtK+SGhAZwlPXpjr9O7cOjAP9/bhq2hC+2J3PP1dlOX0DBjOFsj+/kq2HS+19/tOLxhEU4Oe0qWxL8BTP6AERJEQEsc5Nnta6rCIiggPaLP8fOzDS3s5zxw/kj1efwsaDxfzlM8837O0LNmWXkFNU7TTNNn9GMlrDQ0u/AVwvmR8YFeL0b9XZIMsyKDrU48DU01Hg4AB/EiO7NmLcnsExoS4/1CcNjuJIaQ1LtxxxWxzV18KDA/pNkGWZPyOZ/Io6Hv1oN8fKa10WVx0QGeI2CI+PCCawj32p6VutEScFazVb63ouC9KSqaxr5NZXNvFFZj4PXTqRqbZVTp6ICA7gHwunU1bTwI/e3MLvl+9mx5EynlgwtU3y6ylDovm/yyeyYk8Bz63ManOumvom+9Tm3HEDeGfLEXuSr9aaxRlmBdYNpw3jqz0FFFR0Lsdq/YEinvx0D5dPHcyNs4Zx/alDmZc6mKc+38vXWYWdOldRZR1f7M7nulOHmtGb9MNuc4u+2J1PaXVDmz9eM4bH8eDF4/l45zFu/086tQ3NbYo1tsca3XAXmLTmuGfa32+YTnJsGH+9LpX9BZU8tPQbHliyjePltfz9hmkerZKaP8NsartowyFmj0l0mtq8bMogQgL9+P0Hu+19fvfcUVw0KYn3trYkeK8/UExooD9TkmNQSjFrZDzr3ORprTtQxMyU2A6DgaummSKTz64wRSb7C6sgreM029C4ME4bGceBwioGRAYzsotB1MnCqhBfVd/U4SpH0eLc8QOJCw/i5bXZxIQFct6EtvtR9je9PnX43tYjjEqM6PSy6J15ZezPr2xTYVb0PWXVDfx77UGqbFMqe45VoBRc0+qPz6wRcQyLC2PjwWIunTyIm07vfF2iCYOieOTKU/jZ29tZu7+IO2aPcJr+cnTjrGFsPFjcZroR4OOdR+1Tm2U1DXy++zgr9xZw3oSBbM8tY+/xSv5w1SnMGhHPP1ceYOmWI3z3rJH2x+cUVfHahkM0uhkte39bHinx4Tx69WR7sPmHqyaz40gZ976+lQ/vm22vN9SRpVvzaGzWLEgbyqjECH7+zg62HC51ucJocfphBkWHMNtFkugdc0awMbuYz3YdZ1RiONM6EeQOjQsjOTaUr7OKuPXMEW1uzyqo5M1Nh+1L4fccqyDzWAUv3zKTwbY90+aMSeTec8fYN6D99WUTmebhKqlxSZFMSY5me25Zmw+1yJBAvnXKIN7dcoSRCS19vmBGMsu25fH57uNcNsXkHaWlxNpzv04fGc8H24+SXVTtNDKTX17LgYIqrnXxTduVh6+YxNbDpfz4ra1cM72lbeOSIvm2B+f4dOcxeykJV2amxHk0db0kI5fdR9tuy+LKBzuOcvmUwW2m2RbMGMr6A8WcNjK+X+T89CZr5WFyrPviqKKtoACzRdHLa7O5cupgl1vn9De9Gmh9tOMo972xlbjwID64d7bTt9D2HC+v5aZ/b6Soqp4AP9cbg4q+wcpD+nJPPuEOf7SvSh3SZlNSpRT3njeGJRmHeeyayV3+Q74gLZnMYxUcKq7iwVY1fVo/36NXT2bnkTLufX0LH9w7xz61sDi9ZWqzsVkTHx7E4vRczpswkMUZhwkO8OPyqYOJCglk2rAYFmcc5o45I1BKmVG5lzdxqLja7bB9bHhgm1VS4cEBPLtwBlf+Yw33vr6FRXec1mGegdZmK5OpydGMHRjJoOgQHl5mct1aB1rHy2tZubeA788d5fK8SimemD+V7/43nYWnDet0/180KYmX1h5kzb5CZo9pCeTKqhu4+aWNHCurtfeHUmbhwjnjnb+t3nveGLIKKokIDuDWTq6S+t5Zo/jnqiyXtXpunz2CffkVPD5/qr3PzxydwKDoEBan53L6yHj2HK/gCoc96KypsXVZRU6BlrVNSHvVph1ZG/be/p903txkpiqbmjU1DU34KdXukv+v9xdy16sZBAX4EeDXdvSssbmZl9Ye5H+3zXLq89be3ZLLA4u3ERro71HuSmigP99x8UXnW5OT+M+6bOZNa7tXn3CWEBHM2WMTOX/iwC7lXZ7MbjxtOCv3Frh8D/ZLWuseucyYMUM7OlhQqU/59cf6oqdW6on/95G+5tm1ur6xSXekobFJL3juaz3+oY/0t/66Sk/69cf6QEFlh48TveO5Ffv18AeX61fWHuztpri1K69Mj/3Vh/qGf63TjU3N+lBRlR7+4HL9t8/32u/zu2U79ehffqDzSqv15N98rO99fbP9tkXrc/TwB5frrYdKdHNzs/7ha5v1iJ8v1+uzCrvUnsXph/XwB5frJz7J7PC+O3JL9fAHl+v/rsu2H/vxG1v0Kb/+WFfXNTrd99mvzL+Fr/6/VNU16POfXKGn/+5TfaysRmutdXNzs779lU169C8/0Jtzin3yvN3x+MeZesTPl+uX1hzQwx9crjMc2tjc3KzTfv+Zvue1zU6P+fnb2/Upv/5YN3jw98qdxqZmfd0/1+lxD32oM4+Wu7zP8bIaPeORz/S5T3ylK2sbXN7HVZ+3tvdYuR7/0Ed6wfNfd6vNQpxsgHTthfinWzlaSqlblFJfK6XWKqWme/o4Kz/Dz0/xr5vS+OPVk0nPKeGJT/Z0+NgnP9vLxuxi/nj1Kbx4cxoB/oq7F212uQeS6F0bDxbz+Cd7ujwN2FOs6ca1+4t4+ot99kKdjlObC9LMHl73vb6V8tpGpyThy6aaHKDFGYd5dcMhlm3L4ycXjrMXSeys+TOS+XZaMn+3Fd9rj7WC8AqHZc7z05KpqGupeQQteWUzU7qeoNyRsKAAnrtxOtX1Tdzz+hYam5p5cfVBPt99nF98a4LH04A9af6MZJo1PPnpXsKC/J2S262q963ztNYfKOLUEXHdWkXo76f42/WpRAQHcveiDPu0uqWxqZl7Xt9CZV0Dzy6cQbib+lBhQQE8u9DW569tcSoWCqaMyt2LNhMW5M8zHexTJ4TwjS7/r1NKxQL3AnOBG4GnPX3s75bvYtfRcv7ybZOkfGXqEBbOGsY/Vx3g813H3T7uy8zjPLcii+tPHcpV05IZHBPKU99OZffRcn67bKfbx4meV1hZxz2vb2ZobCiPdmMasKcsSEvm6ulDePrLfbzydTZnjkpwmtocnxTF5CHRbMwuZkhMKGc4TBtFhQRy8aQklm7J45Flu5g7LpHv22o2ddVvrzDF93785laOlrkuimqtILxoUpLTyszTRsSTHBvqtKJu86FSDhRUeaVYY3tGD4i0r7S75/UtPPZxJhdPSur0NGBPSUkI59SUOCrrGpmZEtdmtdJpI+MpqKjjQKEp6HqsrJaDhVUeTxu2Z0BkCE9fn8rBwip+9e4Op2Dur5/vY8PBYn4/bzLjklxvxWIZM9DW59nFPOmwulFrzUNLv2F/QSV/u25av6zlJcSJoDs5WrOA1VrreuCgUipCKRWstXa5/Grv8QoufGolzRr251fyvbNHOlX7/r/LJrL1cCn3vL6FoXGuc7VyS2qYMCiK31w+yX7snPEDuHvuKJ5dkcXGg8V9qnbGyaykuoGymgZeunum0wahfZVSit/PO4UdtuKCrvJm5s9IZseRMq6ZPqRNzsX8GUNZujWPwdEhPPXt1G7nZFjF9654Zg2XP7PGZa2vusZmSqsb2rTV2uT3r5/v48KnVgJQXNVAaKA/l/RAPuNV05LZeLCY1zceZlhcGH9e4HpblL5i/oxkNmYXu0xYtgKq77y4gYiQAKrrzci5t5KbzxiVwI/PH8uTn+1l+5EyAvwUWsP+gkq+nZbs8ZYtVp8/tyKLz3cdRylobNYcKKjiR+ePaTd/SwjhW90JtOKAEofrZbZjR60DSqk7gTsBogaPtFcHPm/8AHvFaUtIoD/P3ziDpz7fS02962nAUwZH86Pzx7ZJML7/grE0a9psIyJ61zXTk5k0uP9sshsWFMC/bkrj7c25LldxXTMjmYOFVdx0Rkqb284YFc+Pzx/LBRMHEuumAGpnjUqM4J/fSeO1jTlOO8o7OmfcAJcrCG88bTg5RdX2KfVRiWZVn7stSrztN5dPIio0kGumJ/f5QPvyqYPJPFbBNdPbrmBOiQ/je2eP5FBRS2HcCyYOtC/d94YfnDOa+qZm+7YjYBL1H7zY/UIOV35z+SRCAv05Vtay7c+3TkninnPbFvwVQvQcpd39Be/ogUpdDFystf6R7fpWYJa7Ea20tDSdnp7exWYKIYQQQvQcpVSG1jqtu+fpTmbkBmC2UipQKTUMqHQXZAkhhBBCnIy6PI+gtS5RSj0LrAQ0cJ/XWiWEEEIIcQLoVsKG1vol4CUvtUUIIYQQ4oQiRVWEEEIIIXyky8nwnX4ipcqAfT3yZN2XAHRuZ9/eE41Z8dnXSZ/6hvSrb0i/+ob0q29Iv/rGOK11+4XsPNCTex2+qbW+swefr8uUUuneWGnQE5RSL/SHfpU+9Q3pV9+QfvUN6VffkH71DaWUV0ol9OTU4bIefK6TifSr90mf+ob0q29Iv/qG9KtvnHT92mOBltb6pOvcniD96n3Sp74h/eob0q++If3qGydjv0oyvGsv9HYDTkDSp74h/eob0q++If3qG9KvvuGVfu2xZHghhBBCiJONjGgJIYQQQvjISRNoKaWmKaXWKqVWKaW+VEqNVMYzSqnVSqnlSqk4233jbNdX225XtuNXKKU22I4v7N1X1Dd0sl+vUkrtVkrVtjrHI0qpHKXU573zKvoWL/Xp/5RSK5RS6UqpH/fOK+lbvNSvK5RS62w/n+mdV9K3eKlfP7X16QqlVI1SanLvvJq+w0v9Kp9ZrXSyX/+qlFpvu/zc4Ryd+8zSWp8UFyAJiLT9fgnwP+Bi4N+2YzcBj9l+fwz4ju33l2z38wP2AJFAILAOiOnt19Xbl072azwQAuxvdY5BwEjg895+PX3h4qU+DbL9DMDUr4vs7dfV2xcv9esKILm3X0tfunijX1ud65vefk194dLdfpXPLK/06xiHvlwHjLJd79Rn1kkzoqW1Pqa1rrBdrQcagbnActuxZcBZtt9dHU8ACrTWFVrrBmAvcKrvW963daZftdZFWutaF+c4CjT7vrX9g5f6tN72awhwCKj2ZZv7A2/0K2Zf1zds34TP9XGT+wUv9avlBuANHzW1X/FCv8pnlgud7Nd9tp/NQJPt0unPrJMm0LIopcKBPwCPA3FAie2mUtt1gFjbdet4PFAAJCilhiilooDZDvc/6XnYr6ITutunSqnFwAFgjda6yUfN7He62a8LtNazgZuB55RS3a4afaLw0t+AhcBrXm9cP9aNfpXPrHZ0pl+VUt8BsrTW2V15rp6sDN/rlFKBwJvAo1rrXUqpYiDGdnM0LR1dYrteavtZrLXWSqk7McOMVcAOIK/nWt93daJfhYe80ada6wVKqTBglVLqTa31Lp81uJ/obr9qrQttPw8rpbYBo4Etvmtx/+CN96tSagJQo7U+4LOG9jPd6Vf5zHKvM/2qlDof88Xq8q4+30kzoqWU8gNeBZZqrZfaDq/EzNFi+7myveNa61Va63Mxw9sRwAbft7xv62S/Cg90t09tiZ1Btqu1QI3tclLzUr9G2X6PBCYDOT5rcD/hxb8B3wEWeb2B/ZQ3+lU+s9rqTL8qpWYBjwDztdZd/xva24lpPXUB5gOVmGTWFcAzmEDzH8Bq4AMg3nbfeNv11bbb/WzH/wx8BXwGzOzt19QXLp3s1znA55h8oc+Bq23HfwisAYpsx0f19uvqz32KSXy1HrsO+FFvv6a+cPFSv2bY3qsbgGt7+zX1hYuX/gYoTA5RfG+/nr5y8VK/ymdW9/r1G9vFuu8M2/FOfWZJwVIhhBBCCB85aaYOhRBCCCF6mgRaQgghhBA+IoGWEEIIIYSPSKAlhBBCCOEjEmgJIYQQQviIBFpCCCGEED4igZYQQgghhI9IoCWEEEII4SMSaAkhhBBC+IgEWkIIIYQQPiKBlhBCCCGEjwT01BMlJCTolJSUnno6IYQQQoguy8jIKNRaJ3b3PD0WaKWkpJCent5TTyeEEEII0WVKqRxvnEemDoUQQgghfKTDQEspNU0ptVYptUop9aVSaqRSaq5S6qhSaoXtMqMnGiuEEEII0Z94MnV4FLhYa12hlLoE+C3wb+ADrfUdPm2dEEIIIUQ/1mGgpbU+5nC1Hmi0/X6RUmo1sBX4mda6xvvNE0IIIYQ3NDQ0kJubS21tbW83pU8JCQkhOTmZwMBAn5xfaa09u6NS4cCXwK3AYaBBa12rlPoDUKu1fsTFY+4E7gQYNmzYjJwcr+SVCSGEEKKTDh48SGRkJPHx8Silers5fYLWmqKiIioqKhgxYoTTbUqpDK11Wnefw6NkeKVUIPAm8KjWepfWukJrbYXEiwCXDdFav6C1TtNapyUmdnuFpBBCCCG6qLa2VoKsVpRSxMfH+3SUz5NkeD/gVWCp1nqp7Vi0w13OBfb4pHVCCCGE8BoJstrydZ94MqJ1NXApcKNtheEzwEKlVLpSahUm0PqjLxsphBBCiP4vIiLC6forr7zCD3/4w3Yf43if559/nv/+978AZGZmkpqayrRp08jKyvJNg73Ak2T4JcASFzc96/3mCCGEEEK4dtddd9l/X7p0KVdeeSW//e1ve7FFHZOCpUIIIYTodcuWLWPWrFlMmzaN888/n+PHj7e5z8MPP8wTTzzBhx9+yF//+ldefPFFzjnnHADmzZvHjBkzmDRpEi+88AIAOTk5jBkzhsLCQpqbm5kzZw6ffvppj76uHtuCRwghhBB9xEc/h2M7vHvOpMnwrcfavUtNTQ2pqan268XFxVxxxRUAzJ49m/Xr16OU4sUXX+TPf/4zTz75pMvzXHLJJdx1111ERETwwAMPAPDSSy8RFxdHTU0NM2fO5JprrmH48OE8+OCD3HXXXcyaNYuJEydy4YUXeuf1ekgCLSGEEEL0iNDQULZu3Wq//sorr9j3Qc7NzeXaa6/l6NGj1NfXtym30JGnn36ad999F4DDhw+zb98+4uPjueOOO1i8eDHPP/+803P3FAm0hBBCiJNNByNPveGee+7h/vvv54orrmDFihU8/PDDHj92xYoVfP7556xbt46wsDDmzp1rL9lQXV1Nbm4uAJWVlURGRvqi+W5JoCWEEEKIXldWVsaQIUMA+M9//tPpx8bGxhIWFkZmZibr16+33/bggw+ycOFChg8fzne/+12WL1/u1XZ3RJLhhRBCCNHrHn74YRYsWMCcOXNISEjo1GMvvvhiGhsbmTJlCv/3f//HaaedBsDKlSvZtGmTPdgKCgri5Zdf9kXz3fJ4C57uSktL09Y8rBBCCCF61u7du5kwYUJvN6NPctU3PboFjxBCCCGE6DwJtIQQQgghfEQCLSGEEEIIH5FASwghhDhJ9FRedn/i6z6RQEsIIYQ4CYSEhFBUVCTBlgOtNUVFRYSEhPjsOaSOlhBCCHESSE5OJjc3l4KCgt5uSp8SEhJCcnKyz84vgZYQQghxEggMDOz0tjai+2TqUAghhBDCRzoMtJRS05RSa5VSq5RSXyqlRirjGaXUaqXUcqVUXE80VgghhBCiP/FkROsocLHW+izgCeC3wEVAmNZ6DvAW8DPfNVEIIYQQon/qMNDSWh/TWlfYrtYDjcBcwNqVcRlwlk9aJ4QQQgjRj3mco6WUCgf+ADwOxAEltptKbdddPeZOpVS6UipdVjkIIYQQ4mTjUaCllAoE3gQe1VrvAoqBGNvN0bQEXU601i9ordO01mmJiYleaK4QQgghRP/hSTK8H/AqsFRrvdR2eCVwie33S2zXhRBCCCGEA0/qaF0NXAoMVErdCOwA7gMuU0qtBsqBm3zXRCGEEEKI/qnDQEtrvQRY4uKmH3i/OUIIIYQQJw4pWCqEEEII4SMSaAkhhBBC+IgEWkIIIYQQPiKBlhBCCCGEj0igJYQQQgjhIxJoCSGEEEL4iARaQgghhBA+IoGWEEIIIYSPSKAlhBBCCOEjEmgJIYQQQviIBFpCCCGEED4igZYQQgghhI9IoCWEEEII4SMSaAkhhBBC+IgEWkIIIYQQPiKBlhBCCCGEj3QYaCmlPlFKFSilHrJdn6uUOqqUWmG7zPB9M4UQQggh+p8AD+5zO3A+kOxw7AOt9R2+aZIQQgghxImhwxEtrXWui8MXKaVWK6WeUUqF+qBdQgghhBD9XldytDKAMVrrOUA58IC7Oyql7lRKpSul0gsKCrraRiGEEEKIfqnTgZbWukJrXWu7ughIa+e+L2it07TWaYmJiV1toxBCCCFEv9TpQEspFe1w9Vxgj/eaI4QQQghx4ugwGV4p9S/gDCBYKZUGfKqUug2oBgqB23zbRCGEEEKI/qnDQEtr/V0Xh5/1QVuEEEIIIU4oUrBUCCGEEMJHJNASQgghhPARCbSEEEIIIXxEAi0hhBBCnHyO7wKtff40EmgJIYQQ4uRyfBc8dzpkfeHzp5JASwghhBAnl9JD5uexb3z+VBJoCSGEEOLkUmXbFrBon8+fSgItIYQQQpxcqgvNz8L9Pn+qDguWCiGEED1qwwtQfKDlemQSnHkfKNV7bRInlipboNUDI1oSaAkhhOg7Kgvgo59CQCj4B0FzIzRUwdBZMPz03m6dOFFYgVZ1EVQXQ1icz55Kpg6FEEL0Hce2mZ8LF8MvDsFP90FQBGx9tXfbJU4sVo4WQFGWT59KAi0hhBB9x7Ed5mfSKeZnUDhMnAc7l0J9VW+1SpxoqgshbqT53cfThxJoCSGE6DuObofoYRAa23Js2kKor4Rd7/Veu8SJpaoQhqSBXwAUSqAlhBCivynKgv/Og5Kczj3u2A4YNMX52LDTzejD1te81jxxEtPaBFpRgyA2BYp8u/JQAi0hhBDed2g9HPgKFt8CjfWePaau0nzoJU12Pq4UpN4A2auh+KDXmypOMnUV0FQHYQkQP1oCLSGEEP2QVacobzN89n+ePSZ/F6AhaUrb26ZeDyjY9rq3WihOVtZ7MzzRFmhlQXOTz56uw0BLKfWJUqpAKfWQ7bpSSj2jlFqtlFqulPLdmkghhBD9U1UBBITAaXfDhudNMntHjm03P1uPaAFEJ8Ooc2Dr69Dc7NWmipOMVdohPAESxpjRrbLDPns6T0a0bgd+6nD9IiBMaz0HeAv4mS8aJoQQoh+rKjJTM+f/1iQdv/fDjpfRH90OITEmqHIldSGUHYLsVV5vrjiJWKUdwhMgfoz53YfThx0GWlrr3FaH5gLLbb8vA87ycpuEEEL0d1UF5oMsIAgWvAL+AfBRB9/LrUR4dxXgx18GwdGwZZHXmytOItaIlpWjBT7diqcrOVpxQInt91LbdZeUUncqpdKVUukFBQXu7iaEEOJEU11oAi2AmKEw9QY4uBoaal3fv6nR5Gi5ys+yBIbA5Gtg9/tQW+b9NouTg+OIVsQACI7yaS2trgRaxUCM7fdoWoKuNrTWL2it07TWaYmJiV14KiGEEP1SVaFJNraMmGNyYXI3ub5/0T5orG0/0AJIvdHc75t3vNdWcXKpLjK7DQSGmtFTH6887EqgtRK4xPb7JbbrQgghhGHVKQqLbzk27HRQfpC9xvVj7BXhXSTCOxoyHRLHS00t0XXWtLYlYUzvTh0qpf6FSYa/RSm1FPgEaFBKrQYWAo/7rHVCCCH6n/oqaKxxHtEKjTGjVdmrXT/m6DbwD4aEse2fWymTFJ+7EQr2eq3J4iRSVWjysyzxo6E812dbPHmSDP9drfUkrfVorfU8rXWz1voHWus5WutLtdZFPmmZEEKI/qnaYfm8o5TZZuqwoabtY47tgIETTdJ8R6ZcC8oftkpSvOiC1tPaVkK8jzaXloKlQgghvKvKoSCkoxFnQVM9HN7ofFxrU0Oro2lDS+RAGHMhbHvDJNEL0RnVhRDuMK2d4NsSDxJoCSGE8C7H5fOO3OVplR+BmpKOE+EdTVsIlccg68vutVWcXKz8QccvAXGjzE8JtIQQQvQLjsvnHYVEwaDUtnla9kT4TgRaYy4yyfZbX+1yM8VJqLYMmhucA62gMIhKhkLflHiQQEsIIYR3uQu0wJR5yE2H+uqWY3lbAAUDJ3n+HAFBMPnbsOcjqC7u+P6HN8Hav3l+fk80N8GXv4eSHO+eV/iOu9HWhNE+q6UlgZYQQgjvqi6CwDAICm97W8ocM6JweIO5XpQF6541ifLBEZ17nklXmZyvQ+s6vu9nvzaXgj2de472HNkMqx6XUhP9ibuFGvFjzHtRa68/pQRaQgghvKuqoO2IgWXYaWbFYPZqs/rwrZvNSsN5z3X+eZJOAVTL1KM7RVlw6GvzuzeDImsKtKPnF32Hu9HWhDFQVw6V+V5/Sgm0hBBCeFdVoetpQ4DgSBg8zSTEf/QgHN8BV71gtunprKBw8wF5dHv799v2uknCH5Lm3ZWK9kCrg+cXfYe7FbHxVkK896cPJdASQgjhXVUFbT/IHI2YY6YON/8HZv8Yxl7Y9edKmtz+iFJzE2x9HUadB7N/5L2Vik0NcGg9BIRC2WHP8sRE77PnaMU7H4+3lXjwQUK8BFpCCCG8q7rI/YgWmHwsgGFnwDkPde+5kqZA2SH3gc7Blabqd+oN7lcq7nofnhgHf0ppuaz8c/vPe2QzNFTD1OvM9dbBntbw2nWwpQtFVdc+DUtu7/zjesNXf3Tut8fHuN5mqbkJ/nOF+z0qP/gJrHqi88+/Y4k5r6e5VdWFEBwNAcHOx6OHQkCIT0o8SKAlhBDCe7Ruu5dcayPmwnm/gW//x7NK8O2xipwe/8b17VsWQUgMjLvE9UrFgr3w7l2mvZMXmEtoLOxc2v7zZq8yP0/7vvnZOtAqzYG9H8Gu9zr3ehrrYe1f4Zsl/WOUbO8nEBzV0nfNjbDeRb5d1pcm6N3/hevz7HrPjHB2htaw+klz3srjnj2mqsC5WKnFz8/U05JASwghRJ9WV2FWArpLhgcTXM25HyIGdP/5rNpbrvK0akohc7kJAAJDzLFpC037diwxJSYW32xuu+EtuORxc5l0FRRkQkOt++fNXgMDJkHiOIgc3DZP62AX87f2fWJGBK3n6OtKc2D0eS19l3oD7P24ZYrOsuXVlvu3Vl9lAqDSQ50rlZG3BfJ3md89nfJrXazUUfwomToUQgjRx9lXdbWTo+VNEYkQOch1ntY3b0NjrQmuLEmTTXC29VX48KeQvxuufgGihzjcZwroJijY7fo5G+vg0AaTa2ads/XzW4nyFUehssDz17NlEUQMNOUx+nqgVVtuKvrHDG85Nu1GM6q1/a2WY9XFsOdD83vpobbnKT3c8ntnXvPWRWaRA3iexN56Q2lHCWOgJNvk33mRBFpCCCG8xxqNaW/q0NuSJrseOdq6yIw6DUp1Pj7tRji6zQRbZz0Ao89vez5wv5rxyGZorGnJNUuabOpzWZtla20ChshB5rqno1oVx2Hfpybva+isthX0O6uxzowWdZbWnk1bltkCpJhhLccGTIDB003fW3lTO5aYUcQxF0FZbttVn47Bl6evuaHWnHfiPLMgodDDKb/qdlbExo8xAXZJtmfn8pAEWkIIIbynvarwvpI0xRboOEz15WfCkQwzmqWU8/0nLzAfzilzYO4v2p4vdgQERbpfzZi9GlAw/ExzfZBtBCzfNgJWfMDs3zjzDnPd0zpb298050m90YyW5e9qOwXnqboKeH42vDq/849d/xw8MRZyOigEa03zOY5ogZk+PP6NCWbBBLRJk2H8peb1VeQ539+aThx2uply9SSxfc+HUFsK079jpvw8ya1qbm6/9EiCb1YeSqAlhBDCe9xtceJLSZPbTvVtXQR+ASb5vbWwOPjBeli4BPz8297u52eKobYXaA08xZzHen5oub81/TXhCoge5tmIltamzckzIXGsCQIdz9UZWsOy+6BwrynUenxX5x676UVTvX/Jre0HetZIlOOIFsDk+eAfbIrDHrMFXKk3ttyv9fRhaY5Z8XfKNWaFqCcjSlsXmf0JR5wN8R5un1Nbat4n7eVogddraXUr0FJK1SilVtgu/WQtqhBCCJ/plRGtVlN9TY1mdGjMRSaHy5XYlJYEeXfnPP6NGQVx1FgHhze25GcBxKSYlXdWQJW92uRZJYzpuM6X5chmk4CfassnGzwNAsO7Nn2Y/m+Tn3b6D02wubUTJSYOb4DiLJj1fTN9+M53TWkGV0oPmVyy1v/WobFm9GrHW5DxCvgFmlFEt4HWIVNewR5cdvCay/PMKsap15lAOWGMGV1rrG//cR19CQiNNbd5eeVhd0e0jmit59ou//ZKi4QQQvRf1UUQFAGBoT33nK2n+vZ/bpb7OybBd1bSFKivhJKDzsdzN5kE+xSHQMvPz4xwHdvRkp+VMttMWSZNNlNRHeVKbV1kpjNPudpc9w+E4ad3fkQrbwt8/AsYcyFc8AiMvdgEnZ4meG9dZAK8cx+Cb/3JBDSrn3R939IcEzy1npoF0/c1JWZ0bNzFpqRC9FBAtV1ZWHoIYoebFZzhAzp+zdveAN1spijBjGjpprb/Vq252+fQUcIYz/O9PNTdQCtJKbVSKfWOUirFGw0SQogTjtaw7U3zwdPXNTebtnY0OuBORzW0fME+1WcbUdr6qpkeGtPNivPQkmdkyV6Dyc86ve39j31jgqqKoy2B2KApgG5/+q6h1tTNmnA5hES3HE+ZbUa52tt/b99nJhCyLm/dbIKVq/5p+iV1ofk32feZ8+OKskxA6qi+Cr55FybNMxt8z7jFTL1+9Uc4uKrtc1uBlisjz4GoIea1p95ojgUEQdTgtiNaJQ4BW8rstnla+budX2P6y6bYrTXVZ1V1bz0SVVdhdgWwRuQ8GW31dBqyE7obaKVorc8G/gm0GdFSSt2plEpXSqUXFHRieasQQpxI8jbDu3fC4lvdT8P0FYfWmbbuWNy1x7e3fN6XkqaYQKeyAPZ8DFOuNaNCXTVggpl2az3tl/kBDJluppkcDZoCDVUtRTetQMuev9UqYHM653KoLWsZobGknGV+uptKa6yHt26CL37XcqkthQUvt+SPjbnABJ2O04fVxaaa+qvznYOt3cugvqJl+lIpuOwpExyte7bt85cech9o+fnDrO9B4gTnVZ0xw5wDrboKqCluOU/KbJMsX3zAXC/LhZcvcX6NZYfh1O+2nCNhtPnZOol98/9g6V2w8k/murt9Dh3FjzYBWU2p+/t0UrcCLa11oe3nJ8BwF7e/oLVO01qnJSb2UE0VIYToa6zRgANfuZ+G6SsK95ifXS0t0F5BSF9KmmwCnZV/Moncqd2YNgSzRUvieOdE9mM7zPUp17l+foDN/zVlHazRluihpjJ9e3laWxeZ+4042/n4oKlmStTdVNqRDLMN0PyX4aF8c/npARh6ast9/ANN0GkVEW1uhne/B1X5EDcC3rkTyo6Y+2551eSuDT+j5fHBEeZ664T+mlITHLZecejozPvMogPH6v8xw5yLllo1tKxAa4RDcNnUAEtuM6Uh7l7f8hr/r6BlihXMKGD4gLYjUdZ7eOWfzRSou30OHVkrD4uy3N+nk7ocaCmlIpRS/rbfpwBdXIMqhBAnuOw1kDDOfOB99Uc4sLK3W+Se9QGTvcbz/eMcVRe63uLE16xAJ/0lk0g+cKJ3zukYIG1ZBP5BZlVda4njzQhYXbkZzbLylqw8LXc1ucpyIesrmHq9mepz5B9gpigPugl6rWnMkXNNYBgQ7HpLI8ciol//zdTquuiPphp+Y50JZoqyTGCS6qIcRtIUU66iqqjlmLsVhx2JGW7OZeWMWUFXTIr5GT/aLCQ4uNqMXh3eAFc8bUYY7a/RxUhl/Gjn3KrmJshea5LwE8fD29+F4ztM0NveSKd9GtJ704fdGdGaCKQrpVYBzwDf806ThBDiBNLUYOoRjZgDl/7FfGN++w6oONbbLXPNmn4pO9z5wo32fQ57YUTLmurTTd0fzbIkTTFJ9RXHzTTdjrdg3LdapuUcBQSbaTJoKWRqGTTV1MRqXagTYNvrmDymG9reZp2raJ/r90v2KucyE+5YRUS/fhq+eMRsMTTzDvNevPxvcHg9/PdKQJmArzX79KdDsNjlQGuYSWQvP+L6PEqZQDXzA9PetNtN2YeOJIx2ztE6th3qyszK02//xxST3b2s4/dmbAoof6/W0upyoKW13qi1nqa1PktrfbbWup0JaCE8tP8L+ORXrm87vgve/X77+4/1pJ1LYcVjvd0KQ2vTlt3LO75vdTG8f2/Xhsa//rtJlO4t2xfD57/t2khLb8nbaqa0UmabaZhv/9fkpbxzZ2+3zLWifWYEADq/4q221Iyc9EagZU31uRtx6grH+lh7PzYrKq3E7vbu71j6wTreWNt2lERrU2tq+GwzjeeKlevVelTLKjPROqhzJ/UGk6QfmwKXP90yajV5vglmyg7DyLMhZqiL12XbT9JxdM8eILUzdeiKFVBZKw9dlYgYMcdU3h801Yy8eSJ+jBlNtRacWO/dlNlmNeNlT5nrHS3UCAgyKyC9OKLVzW3ThfCyLx8xy5OnfNv8J3O05inzjXL0ed77Q9pVzc3w2a/NH4nUGzr/rc7bNvwTVjxqiiOOu6TtFIRFa1h6N+z9yHzzv/Ifnj9HU4OZ9goKN/kR3Uk07orDm0xiq/VBfvrdPfv8XZVty88abvtAHDDBLJ3/9FdmRVvr93lvaqw3H4Czf2SCiuzVpvK2p6yppd5Ihgc4/Qfmi0TrRPWuchzJObwRIpJg1Lnu7z/9JgiNMeUmnM7jEKgMmNBy/NA6k/R91k/dn3PQVDOVtvMdmLKg5XhuugneWgd17ky51jz/rLsgJMr5tov+aAKvqW5G1cLjzQrC1oFWUETHo2mtxQ5veTy4LhEx/jIzvX7er9uvdebIXtV9PwydaQLT+NEQZdsGaeq1JpiMTOr4XPFj+kaOlhBed3yXCbLAfMtzVFtmhn2hc8X3fCVnrS23QJvlw70pNwM+fchUSS471PLB7srXz5ggKyrZjMh1Zh+0vC1mZKYqv+2ycF+rLobFt5jVT2Mugs/+zwRe/UH2GjOl5Fg4M/UGM/KypQ+8lx2VZJsAPGGsGQnobJ5WbxQrdZR6A5zxQ++dLzTGBAH7v2jZg9BVDpRl+Olw8aNtc5wSxphK6a0TyrfYalZNuML9Of38bcnsnziXebCXmTjD7UOdhESZXCdXuWuBIXDpk5A8w/3jW+8n2V4NrfZEDTEbQVuBllXawVF4glk56W6Uz5V428rDon1mivbQurajfWc9YPLVOpIwxqtFSyXQEn2HtWXGiLNN0qZjHZ+d75qh5NHnm8RRa5VMb9n6mlkNNHSWaXfr6tE9xQpAIgfBHZ9DcLT7D+9D6+Hzh80f9Wv+ZYox7nrP8+eyVs6FxPRssOu4SmrBf+Dqf5o/1otv8Wzj297UWG/6vfWoQ1icGXncYUtG7ius6ZL4MeZDqvxIyzJ7T3hSELK/SZoCOWu6l/vlH2hGshwT4usqzd+1SVeZKeX2TLvRPP/2t1qOZa82wY+3Ru86kjTFbOljbZzdXmmH9vgHmv+/pQ5Th96YEYhNMZ8fRftNKQ1rUUJXxI82o4VeIoGW6BuaGkz14rEXwxn3mLoqez9quX3LIrNq65InAG1LIO0ldRWwaymccpXJbSjNMfuJ+UpTg+tLY72ZBqw4CgteMUPkk68xI3+1Zc7nqCo0NZxihsGVfzebt8aNbDty2J7sNTBgkvmjv+dj5xVI3dXeqMnav7askrLqFy14xQRe737PfZCrtXN/9Ub9qrwtZvm9qz/40240+SR7P27/HJ0ZUepu7pqVABw/quMaTq7YR7ROoHI+1rSftQdhVw2aYkaEGuvN+3HXUjNC7En1+sRxMCTNfMHR2uSpHt7YUgqhJyRNNknsx3eZNpQe6nx+lsWqpVVbZvL6vBFo+QeaYKtwn0N+VjcCLS+SQOtkd3gTPD6mc99afWHfZ+aP9LQbTQ5E5KCWkZmCvZC70fxBihthcl2sPzi9YedS8+GZeqOp5Bwc5bspoI9+Do8kuL78PtEEoxf+vmXIP/VGM/K3892WczQ3m8Tr6iIToIREm+H+1BvMh2hxB9tWgPlwOLzBjHKk3mDqFO14q+PHeeLASnh8dNsK3GCWZ3/5+5ZVUpYh003gte9T2PK/to/TGl4427m/Hh3a8+9ze37WmW1va/0+d+eNhebfr6P3e00p/GUCbOrGbmhF+0yQFBpjpk8iBnYuId6eo9UL5R18ZZAt0OruSsakKSaw/n2ieT++9wPzZWfY6R0/Fszfv3xbekXuJmiq8zwR3husfji23byOuvKuB0gxw02gZa+h1cWArbV425TfwdVm+jtyYNfOY+V7eYkEWie73e+bkYHNLj6setLWRabg3OgLTE7C1Otg/2dmSfPWRWa5rVUkcNpC84F5aH3vtTV+jCkKGBRmgoBdS81Il1ef53XY8BxMutokT7u6XPVPU33ZMmS6WXnl+OG95knI+gK+9RgMTm05PvV6QHk2OmgVRhwxBwZOgkGp3gsudy8zU05v3ew8EldZYOr7tF4lZZl5h1nanvFy23PmfG0Ct6k3mH6a+0szFdDT7/ODq00bXdWVav0+dyU/E/Z8YEZ7v36m/efKWWtGNz960OTtdUVRVksdIXfbobSnqsBMXwcEd+35+6LRF8CVz3Y/0JrybbP3oOP/36tf9DzHadLVEBBi/v5krzF5Tp4Gad4QM9y2cfaOrpd2sJ9rmNkY2pqq9tZiovhR5j18aF3XR7PAfME462feaRMSaAlrWmDbG723NUhlgZk+mXptS6Jp6o1mmHrrItO2MRe0fDuZeKVZ7bL11Z5vq/WfOPWGlj+Q0240QcjOpd57nvzd8MH9ZvTu6n+ZVUmuLlOvc/5DrZT5QMjdaEYCD642KwUnL4AZtzo/R3QyjDrHthdYBzlm9sTbM1te8/EdrkehOit7tflmX3oI3vuh+VBvboJ37jDTCt/+T9tVUo6vNW9L233kti4yOXSXPmn6ae6DJr+vJ9/nniy/t97n295wffvWV03eyejzTX5de18uDq42H8SRg0z+Wlf2VSzc17KdCZgPq8pjnq/A6q1ipb7kH2C+3AUEde88IdFw5r3O/3/bSz5vLTTGrMbbsdgsRkmaYo71FKvw6rHt3gm00OYLEXhvRCthjBnpq6/s3mifUnCumzJDXSCB1smstsx8UA48xewtlfVV77Rjx1tmyb5jfZqE0SbRfNUT5g+947fJoHCz6WlnV815w9ZF5pukY1G/5JlmFMBbCeJ1lWZ0Jygc5v+7/VVOrky51owArv0bvH07xI2Cy/7q+ptz6sKOVypC28KIp1zjnVVzlQVm09xp34HzHzYjrBtfMP/uB1bAt/7cssTelSnfNoGIY9/XVZr3xilXmRFHy7SFPfs+P5JhpnHb+2Ztvc9dTYU3NZiaZWMvhvkvmQ+nxbe2bCPSWvYaM8q64BUzsvXu9zs3vV5TYgIla0QLWtre0fvD0lvFSk8W0xaav9tH0j0v6+BNSVPg+E4osaUbxHYxQLIel72mayUi3HH13u0DJNA6meWsM9+mL/itSTBuPUKktRlZ8WRFXVODGUHpLK3Nh/WQGTBgvPNtqQvNSFFYvPmwaX1bZ1fNuVN80LOArbnJjDyMOq+lNguYAGbaQjPSte1Nswx77yem7zxRWdDymL2fmNyNwr1wzYue1XxpLXIgjLnQ/HvWlpsRIXermsZfZqZ61v2j5fn3fd6ysghcj8yExcH4S7u/as4aUR1xllkEMfZbpmDtikfNVPH0m9p/fHiCeW9sf7NlSw8rybh1YcmxF3f/fd5aeZ77KWNPl9+nLjT/3kdaTfft/9xM66cuNKMhC14xeXbv3Nm2rdXFZoQx5SwzSnLh703+nrvpxuamtqNU1vYljonA8aPMCNmu95zfo+4uJTm9V0PrZDDibFOaBVoWK/SkpMnmb3LWV2YaMSSma+exRsLyd3WtRIQ7Vm5V63IqvUwCrZNZ9mpT22X4bJj8bbPlgeNy+c3/hWdPM4UV26O1+eP/j5lmNVpn7FgC+Ttd1zaZdJUJAlJdDNtbq+a6O6KStxX+MQv+O6/lg9qdjf8yy91dFXCccp0Z4Xn3Tnjt2+by7OlmVKY9VYXwz7NaHvPat02gcM4vzf5lXZV2G6DM1NnASe7vFxhipmz3fdry/IuugUULWqbY3BVGnPYdMwry9dNdb2f2avONdlCq+WM771kTxCaOg8v+4tkf4Gk3mpGUfZ+Z61tfM8GC48a6YPKGuvM+b62pAf51Lrx4QdtAvabUJOkPTu342/qkq0wtpc8fdp7W3PKqGR0ac4G5PjgVLv6jybfLXOZ8jpy15qf1bzTre6aMh7vpxg9/Cs/MgCObW45ZdYMcE4GVMl8sDqxwfo+6u5TmdH2UQ3TMzx9m3GzeL8NO6/nntxLis1d3L0CKHGxG3cG7xZ7DE825rf8zfYRUhj+ZZa82016BIWZEZuM/4Zu34dTvmoTHj35mvkmvf9Z8K59wuevzbHrRVC0OiTbL7e9a7dl/noK9sOw+GHYGTHMxchESBfeku/7WZK2a+/L3ZkSqM4XtLLVlsPhmk9eSuxG++K0ZCXDFKgo69luuiwtGDYIfprfUEbIqsL99B9y1xvXIlONqwOteb8lBCwxzrh7dFWMvhJ8d8GxI/sLf26ZCbdNMOetM0LHyTybgczcyM+pck/v11R9h6Gldm8rIXmOCZmt6NCwOvv+1+SPsOO3XntHnmz+wWxeZUdGctaaitKsPge68z1vb96mZoqs4agKXec+a41qbUcnyPLjmpY7PExIFl/zZPMbq86pCk7c46y7nCvwzbjXTqlteNbmKloOrzftm8HRzXSlTxuPYDjPdeNfqltpWO5ZAum1l4pb/mQUUYBKT/QLM4gNHlzwOM2/zrE9QMMALmzkL9+b8xIz0uspb9LWEceAXaFYddydA8g+A6CHeq6FlUQq+v9akXfQhMqJ1sqopMcXzrA/HQVNh4GTzB7y23OQIhcTA99eZP95Lf+B6afyRzfDJL81U1R1fmm/ki291LjbqSn01vHUTBIa2n4cUMcB9EmpnVs21prVJvC49DAvfMivYvn7GjHa0Zq9KPgiues79t7jY4WYKdMgMSE4ze9rVV8GS211vJmtfDfgnGH9Jy2O7G2RZPM17CAg2H7bW85/xQzOKuPLPpiK2u8KISpncr7hRJhfMsWq1JyqOmSmz1gFacKTnQRaYQGTKtSYwWft02xw6R119n7uyxbZSds5PTJC3xTYluf5ZyFxuVpgNnenZuabd6Nzn2628xVYr3ewrFT93XqmYvdrkejn+XwmJNtPGjtONhfvMl5uhs8xI2o63W6aJC/eZIKv11kpBYS3vjQ4v0z3fMkV0jZ9/11IKvCEgqOXvU3cT2K3HeysR3hIW1+dWvUqgdbLKWQdo57yb1Bvg6FYzbVSSbRJwo4eY3BCFCTYcN3SuKTEjQuEDTJmBhNHmW/SRdPj8N+0//4cPmCToa/5ltlXpis6smmttwz9N4vX5D5sh+Iv+aD6El37fvHaLNTJlFQXtTBXmAePh0r+YqtIrWm2MenCVw2rAWzrX9p5wyROmTMQ7d7ZfGDE4wnyY15abYKszK/ocN33trmk3msAk42Uz0tbee6qz73NXKgtg3ydm2vWcX5n++eAByHjF7IE5/jI47fudew2XPGE+xN75rhlxGjzN9XYprVcqVhWaXBdX/ThoqinrkfUFfPUHE1j6B8H8l837rq6s5ctF0X6vF2oUJyCrgGt3R6LsgVYv7xPbA3pu6tCL5eyFF2TbloInO3zjnvJt2x5y600AkmJbyh87HOY9D29cD69faz6AwYxmlefBrR+3jJ5Mmgc53zPf6uvKTf5Na9XFJon67Afb36DVE6kLzQd89irnnKZD66HyuPP0iiU3vWUa8Ix7zLGAYLO9yz/PhteuM7vYg3l9ez8yq9+GdGIptr1915uprNVPmg/EwFBz/Jt3zIeau9WAvS0ozARQL5zTcWHEgZNMLth7d7dMfbVWsNf0w4xbWl5v9mqTUJvkhU2VB0wwI1J5mzuud+TJ+/zTX5nX5I7jSlk/f1MP6Z9zzGhRzHCzWXdn/12Dwsx78IW5UL3ftguCC44rFc+8ryVgdRcMz7jVLKNfbTvfwrdNYBk5yGxCvnWRqdFUlNX9/4/ixGetAu52oDXMO+fpB3ou0LJWdvWxudOTVvZqkyzsOMQangCn3W1Gqs64z/n+4y8xBfa+/nvLxs9+AebDqPX0yIWPmJECaxNoVyZdbQKt7hp/acv+flagVbgfXr3GvN9ufBtGn9dy//amAeNGwNUvmA9Lx+nIGbfCqXd2vY2XPA5luSbJ3RIWbz5UO9rjrDcljoN5/zA5Qa4qmzuattAEUiv/bIKA1n3+6jWmjERzo8mNgrb5Wd01+0dm6nDcJe3fr6P3+Rn3mGnkYafD5PltH+9qpWzkQDNK9PGDcMUzXa9vlDjWvC/XPev6uS2pC2HZveZLQ/Yakxw9eJrr+1pTvBXHTD7bmPPNcT8/80Vg5Z9N1f+mOq9XxBYnoDEXmAUkXfni6WjkXDPdn9CNbY36CaV7aBuTtMEBOv3vt8NVz/fNb/Ank+pi+PNIM/Jwtveq3/aa5T82K80e2GumRV4834xEhSea5PS71pippOZmM1qx/wu4/ZPu/6EQzuqr4cXzzEiiqz4fNNUUO7z9U4hIgr+MN4n41qhiX9HUAK9cauoF3bmibfCRt8WMOl36F5h5e2+00EzVPjHW5GsdWmc26f3OO50/T0k2/G2qCaRz1sItH7aM8AlxklNKZWit07p7nm7laCmlblFKfa2UWquUmt7unSOTYPsbJhIWvSvna0x+Vt8p6NYtqTeaqelv3jEryI5/Y6qpX/uqybVZcptJRl/3jPkGddEfJMjyBWvqy12fL1xs8vneutkki0PffA/6B5rRKf8g01bHmmJgRrMCQkzR1t4SEmWmxbe/ZXIdu1q8MjbF/BtY5SEkR0sIr+tyoKWUigXuBeYCNwLtF9OJTIKR55gPwmM7uvq0whuyV0NAaMuy7v7O2t/vi9+ZQH7OA2Z6JHEsXP43841/8c3w+W/Nh1N3pgFF+9rr87A4k3BefgQ+/rlZFdde1ffeFD3EBOv5O03pBktDrdkCZfxlPbv9iSvTFprCrNC9gNXKaQuOMqt8hRBe1Z3kiFnAaq11PXBQKRWhlArWWrsvE331v0zC6CuXmqkD0TvKcmHYrD63BLbLrD3vPvs/84Ez9xctt01ZYL6tZ7xsCpxe8YxMXftae30+dKYpe/DJL8x0lZ9/77a1PWPON0H76idM4Kj8zchpbakJcnrb8Nkmkbi62BR87aqJV5hVwPGj5f+GED7QnUArDnDctbTMduyodUApdSdwJ8CwYcNMSfzr3zCJps0u6gqJnjFggq1y+Alkxs3mA/DU77VNrr74MTP6MPV6M4oifK+9Pj/t+2Ykpi9OG7Y29xeAdt6uZvylZiuU3ubnB5c8afYC7c6CgqBwuOwpWagkhI90ORleKXUxcLHW+ke261uBWe5GtNLS0nR6enoXmymEEEII0XP6QjL8BmC2UipQKTUMqGx32lAIIYQQ4iTT5fFmrXWJUupZYCVmk7T7OniIEEIIIcRJpVuVArXWLwEe7JoqhBBCCHHykb0OhRBCCCF8pMcqwyulyoB9PfJk3ZcAFPZ2IzwUjVnx2ddJn/qG9KtvSL/6hvSrb0i/+sY4rXVkd0/Sc3sdwpta635RKVIple6NlQY9QSn1Qn/oV+lT35B+9Q3pV9+QfvUN6VffUEp5pVRCT04dtrPDsOgG6Vfvkz71DelX35B+9Q3pV9846fq1xwItrfVJ17k9QfrV+6RPfUP61TekX31D+tU3TsZ+lWR4117o7QacgKRPfUP61TekX31D+tU3pF99wyv92mPJ8EIIIYQQJxsZ0RJCCCGE8JGTJtBSSk1TSq1VSq1SSn2plBqpjGeUUquVUsuVUnG2+8bZrq+23a5sx69QSm2wHV/Yu6+ob+hkv16llNqtlKptdY5HlFI5SqnPe+dV9C1e6tP/KaVWKKXSlVI/7p1X0rd4qV9XKKXW2X4+0zuvpG/xUr9+auvTFUqpGqXU5N55NX2Hl/pVPrNa6WS//lUptd52+bnDOTr3maW1PikuQBIQafv9EuB/wMXAv23HbgIes/3+GPAd2+8v2e7nB+wBIoFAYB0Q09uvq7cvnezXeCAE2N/qHIOAkcDnvf16+sLFS30aZPsZgKlfF9nbr6u3L17q1xVAcm+/lr508Ua/tjrXN739mvrCpbv9Kp9ZXunXMQ59uQ4YZbveqc+sk2ZES2t9TGtdYbtaDzQCc4HltmPLgLNsv7s6ngAUaK0rtNYNwF7gVN+3vG/rTL9qrYu01rUuznEUaPZ9a/sHL/Vpve3XEOAQUO3LNvcH3uhXzL6ub9i+CZ/r4yb3C17qV8sNwBs+amq/4oV+lc8sFzrZr/tsP5uBJtul059ZJ02gZVFKhQN/AB4H4oAS202ltusAsbbr1vF4oABIUEoNUUpFAbMd7n/S87BfRSd0t0+VUouBA8AarXWTj5rZ73SzXxdorWcDNwPPKaW6XTX6ROGlvwELgde83rh+rBv9Kp9Z7ehMvyqlvgNkaa2zu/JcPVkZvtcppQKBN4FHtda7lFLFQIzt5mhaOrrEdr3U9rNYa62VUndihhmrgB1AXs+1vu/qRL8KD3mjT7XWC5RSYcAqpdSbWutdPmtwP9HdftVaF9p+HlZKbQNGA1t81+L+wRvvV6XUBKBGa33AZw3tZ7rTr/KZ5V5n+lUpdT7mi9XlXX2+k2ZESynlB7wKLNVaL7UdXomZo8X2c2V7x7XWq7TW52KGtyOADb5ved/WyX4VHuhun9oSO4NsV2uBGtvlpOalfo2y/R4JTAZyfNbgfsKLfwO+AyzyegP7KW/0q3xmtdWZflVKzQIeAeZrrbv+N7S3E9N66gLMByoxyawrgGcwgeY/gNXAB0C87b7xtuurbbf72Y7/GfgK+AyY2duvqS9cOtmvc4DPMflCnwNX247/EFgDFNmOj+rt19Wf+xST+Go9dh3wo95+TX3h4qV+zbC9VzcA1/b2a+oLFy/9DVCYHKL43n49feXipX6Vz6zu9es3tot13xm24536zJKCpUIIIYQQPnLSTB0KIYQQQvQ0CbSEEEIIIXxEAi0hhBBCCB+RQEsIIYQQwkck0BJCCCGE8BEJtIQQQgghfEQCLSGEEEIIH5FASwghhBDCRyTQEkIIIYTwEQm0hBBCCCF8RAItIYQQQggfCeipJ0pISNApKSk99XRCCCGEEF2WkZFRqLVO7O55eizQSklJIT09vaeeTgghhBCiy5RSOd44j0wdCiGEEEL4SIeBllJqmlJqrVJqlVLqS6XUSKXUXKXUUaXUCttlRk80VgghhBCiP/Fk6vAocLHWukIpdQnwW+DfwAda6zt82johhBBCiH6sw0BLa33M4Wo90Gj7/SKl1GpgK/AzrXVNZ5+8oaGB3NxcamtrO/tQ0YGQkBCSk5MJDAzs7aYIIYQQXfa3zX8jpzyHv8z9S283pUs8ToZXSoUDfwBuBQ4DY7TWtUqpPwAPAI+4eMydwJ0Aw4YNa3PO3NxcIiMjSUlJQSnVtVcg2tBaU1RURG5uLiNGjOjt5gghhBBdtuLwCopri3u7GV3mUTK8UioQeBN4VGu9S2tdobW2hqEWAWmuHqe1fkFrnaa1TktMbLtCsra2lvj4eAmyvEwpRXx8vIwUCiGE6NdqG2s5WHaQktoSGpsbO35AH+RJMrwf8CqwVGu91HYs2uEu5wJ7utoACbJ8Q/pVCCFEf7e/dD9NugmNpqS2pLeb0yWejGhdDVwK3GhbYfgMsFApla6UWoUJtP7oy0b6yty5c/nkk0+cjv31r3/l7rvv7qUWCSGEEMKSWZxp/72gpqAXW9J1niTDLwGWuLjpWe83p2ddf/31vPHGG1x00UX2Y2+88QaPP/54L7aqaxobGwkI6LH6s0IIIYTPOQZahTWFvdiSrjupC5bOnz+f5cuXU1dXB0B2djZ5eXm89tprpKWlMWnSJH7zm9/Y75+SksJvfvMbpk+fzuTJk8nMNG+AyspKbr31ViZPnsyUKVN4++23AXj99deZPHkyp5xyCg8++KD9PBEREfbflyxZwi233EJZWRkpKSk0NzcDUF1dzdChQ2loaCArK4uLL76YGTNmMGfOHPvz3nLLLdx///2cc845TucXQgghTgSZxZkMCh8EQFFNUS+3pmv6zBDInzb+ySly9YbxceN58FT3AUh8fDynnnoqH3/8MVdeeSVvvPEG1157Lb/4xS+Ii4ujqamJ8847j+3btzNlyhQAEhIS2Lx5M88++yxPPPEEL774Io888gjR0dHs2LEDgJKSEvLy8njwwQfJyMggNjaWCy+8kKVLlzJv3jyXbYmOjmbq1KmsXLmSc845h2XLlnHRRRcRGBjInXfeyfPPP8+YMWPYsGEDd999N19++SUAe/fu5fPPP8ff39+rfSeEEEL0pqbmJvaW7OXSkZeyZO8SGdHqr6zpQzDThtdffz1vvfUW06dPZ9q0aezcuZNdu3bZ73/11VcDMGPGDLKzswH4/PPP+cEPfmC/T2xsLJs2bWLu3LkkJiYSEBDAwoULWbVqVbttufbaa3nzzTftbbn22muprKzk66+/ZsGCBaSmpvK9732Po0eP2h+zYMECCbKEEEKccA5VHKKmsYapiVOJDIw8cXO0ekp7I0++NG/ePO6//342b95MTU0NsbGxPPHEE2zatInY2FhuueUWpzIJwcHBAPj7+9PYaJaaaq3brPLTWrt9Tsf7Op77iiuu4Be/+AXFxcVkZGRw7rnnUlVVRUxMDFu3bnV5rvDw8E6/ZiGEEKKv21NsChqMjxtPfGi8jGj1VxEREcydO5fbbruN66+/nvLycsLDw4mOjub48eN89NFHHZ7jwgsv5O9//7v9eklJCbNmzWLlypUUFhbS1NTE66+/ztlnnw3AwIED2b17N83Nzbz77rtObTn11FO57777uOyyy/D39ycqKooRI0awePFiwARw27Zt83IvCCGEEH3L7uLdBPgFMCp6FIlhif02R+ukD7TATB9u27aN6667jqlTpzJt2jQmTZrEbbfdxplnntnh4x966CFKSko45ZRTmDp1Kl999RWDBg3i0Ucf5ZxzzmHq1KlMnz6dK6+8EoDHHnuMyy67jHPPPZdBgwY5nevaa6/l1Vdf5dprr7UfW7RoEf/+97+ZOnUqkyZN4r333vNuBwghhBB9zJ7iPYyOGU2gfyAJIQn9dkRLtTfF5U1paWk6PT3d6dju3buZMGFCjzz/yUj6VwghRH+ktWbuW3OZM2QOv5/9e/608U+8s+8dNizc0GNtUEplaK1d7nzTGTKiJYQQQog+pbCmkOLaYibEm8GChNAEqhurqW6o7uWWdZ4EWkIIIYToU3YX7wZgXOw4wARa0D+LlkqgJYQQQog+xVpxOC7OBFqJoYmABFpd0lM5Yicb6VchhBD91e7i3SRHJBMZFAlAfGg8IIFWp4WEhFBUVCRBgZdprSkqKiIkJKS3myKEEEJ02p7iPYyPG2+/bk0d9seipb1asDQ5OZnc3FwKCvpfx/V1ISEhJCcn93YzhBBCiE6paqjiUMUhrhh1hf1YbEgs/sq/X9bS6tVAKzAwkBEjRvRmE4QQQgjRh+wv3Q/A2Nix9mN+yo/4kP5ZHb7Xc7SEEEIIISwltSUADAgb4HS8v27D02GgpZSappRaq5RapZT6Uik1UhnPKKVWK6WWK6XieqKxQgghhDixVdRXANgT4S0Jof2zOrwnI1pHgYu11mcBTwC/BS4CwrTWc4C3gJ/5rolCCCGEOFmU15cDJ1GgpbU+prWusF2tBxqBucBy27FlwFk+aZ0QQgghTipWoBURFOF0PCE0geLaYpqam7r9HFprVueupqGpodvn6ojHOVpKqXDgD8DjQBxQYrup1Hbd1WPuVEqlK6XSZWWhEEIIITpSUV9BaEAogX6BTscTQhNo0k2U1pV2+zm2FWzj7i/u5rGNj3X7XB3xKNBSSgUCbwKPaq13AcVAjO3maFqCLida6xe01mla67TExEQvNFcIIYQQJ7KK+gqigqLaHPfmNjwHyg4A8Nbet/jgwAfdPl97PEmG9wNeBZZqrZfaDq8ELrH9fontuhBCCCFEt1TUV7TJzwLvBlrZZdkE+gUybcA0frvut/bAyxc8GdG6GrgUuFEptUIp9QzwCdCglFoNLMRMJwohhBBCdEtPjGgdLD/IsMhhPH7W44T4h/CTFT+hprGm2+d1xZNk+CVa6wit9Vzb5R6tdbPW+gda6zla60u11v2vVKsQQoh+591977Lp2KbebobwoZ4Y0copzyElOoWB4QN5bM5jZJVm8aeNf+r2eV2RgqVCCCH6jacynuK13a/1djOED5XXl7sMtMICwwgLCOt2oNXY3MjhisOkRKUAcMaQM5g/dj7LspZR11TXrXO7IoGWEEKIfqG6oZqSuhKvrDoTfZe7QAvMqFZ39zs8UnmExuZGUqJT7MfOTj6b+uZ6tuVv69a5XZFASwghRL+QV5kHIIHWCaxZN1NZX9luoFVQ071yUdll2QD2ES2A6QOn46f82HTc+9PSEmgJIYToF45UHgEk0DqRVTVUodEuk+HBO/sdZpdnA86BVmRQJBPiJrDx6MZundsVCbSEEEL0C46Blta6l1sjfMHa59BdoJUYmtjtqcPs8mxigmOICYlxOn5q0qnsKNzh9dWHEmgJIYToF6ypw8bmRqoaqnq5NcIX3G0obUkITaCioYLaxtouP0d2WbbTaJYlLSmNhuYGthV4N09LAi0hhBD9gjWiBTJ9eKJyt6G0xSrxUFTb9VGt7PJshkcNb3N8+oDp+Ct/r5cPkUBLCCFEv3Ck8ggBKgCAsrqyXm6N8IWORrTiQ+MBKKjuWkJ8ZX0lhTWFTisOLRFBEUyMnyiBlhBCiBNbUU0Rjc2NbY7nVeUxKmYUACV1LrfY9YqK+gqfVQkX7fN4RMtNnlZpbSn1TfVuz59TngPAiKgRLm+fmTSTHYU7qG6o9rjNHZFASwghRJ9R11TH5e9ezqLdi5yOV9ZXUlZXxqSESYBvpw5/+MUP+eOGP/rs/MK9jpLhB4QNAOBY9bE2t2mtuWbZNbyw/QW35z9YfhDA5YgWmECrsbmRrQVbO9Hq9kmgJYQQos84XH6YioYKNh/f7HTcys+aFG8CLV9NHWqtySzOtNdaEj3LCrQiAiNc3h4fEk9McAz7Sva1uS23Mpf86nz2lOxxe/7ssmz8lB9DI4e6vH36gOkEqADSj6V3ofWuSaAlhBCiz7BqHLX+sLRWHI6LG4dCUVLrm6nDsroyqhuru10UU3RNRX0FEYER+Pv5u7xdKcW4uHHsLt7d5rY9xeY9Y71XXMkpz2Fw+GCC/INc3h4WGMakhElsPOa9eloSaAkhhOgzrEDrSOURp1GrvCrz4Tk0cijRwdE+mzo8UmVGzopqiqRWVy9ob/sdy4S4Cewv2U9Dc4PTcSv4yqvMc/tvl12e7Xba0DIzaSY7C3d63ugOSKAlhBCizzhYdtD++96SvfbfcytyCQ0IJTY4lpjgGN8FWhUm0KptqpVaXb2gor6iw0BrXNw46pvr20zvWiNalQ2V9qR6R826mZzyHJc1tBzNTJpJo267GKOrJNASQgjRZ+SU5zAyeiQAu4tapofyKvMYHD4YpZRPAy3HaafubvUiOs+TQGt87HgAMosznY7vLt5NZKB5rGPNNUt+dT41jTWMiHa94tCSmphKgF9AZ5rdLgm0hBBC9BnZ5dnMGDiDhNAEpzytvKo8hkQOASAmOMZnyfCOH9CSp9XzPAm0UqJTCPYPdgq0imuLya/OZ07yHMB1nparPQ5dCQsMY8W3V3Sq3e3pMNBSSn2ilCpQSj1kuz5XKXVUKbXCdpnhtdYIIYQ4aZXUllBWV8bwqOGMjxvv9EF6pPIIg8MHAxAdHO2zZPi8qjxC/EMA97WahO+U15e7Le1gCfALYEzMGPtUIbRMG5437DzA9YiWNdXoqip8a9HB0Z42uUOejGjdDvy01bEPtNZzbZcMr7VGCCHEScsacRgRPYLxceM5UHqA+qZ6yuvLqaivYEiEGdGKDYn13YhWxRF7rS6ZOux5FfUVHQZaAOPjx7O7eLc96d0Kyk9NOpXIwEjXgVZ5NmEBYfZaXD2lw0BLa53r4vBFSqnVSqlnlFKhPmiXEEKcsDYc3cBTGU/1djP6HGvEISUqhfFx42nUjewv3W+fBrKmDqODo6ltqvV69XatNXlVeUyIm0CAX8AJFWjVNtbyqzW/arf0QW9ram6isqGyw6lDMHla5fXlHKsyhUszizNJCk8iJiSGwRGDXU8dlpk9DpVSXm97e7qSo5UBjNFazwHKgQfc3VEpdadSKl0plV5QIHPdQggBsCxrGS998xL51fm93ZQ+Jbs8mwC/AAZHDGZ8XEvCszU6MTjCTB3GBMcA3i9aWlJXQk1jDcmRySSEJpxQOVp7S/byftb7LMta1ttNcauyoRJwv/2Oo3Fx44CWkg6ZxZn2JPnBEYNdjmjtK91n38KpJ3U60NJaV2ita21XFwFp7dz3Ba11mtY6LTExsattFEKIE4pVE8rbm9f2d9ll2QyNHEqAXwBDI4cSFhBmAi1byYUh4bapw+BYwPvb8FjPMzh8MAkhCSdUjpaV09aX33MdbSjtaGzsWBSKPcV7qGmsIbs82x58DYkY0qaWlpUsbwXwPanTgZZSyjFD7FzAfa17IYQQbVgf6H35Q683ONY48lN+jIsbx57iPeRV5REeGG5PULZ+ej3QshUrHRI5hITQhBNq6rC4thiArQVb2910uTd1JtAKCwxjeNRwMosz2V+yn2bdzIS4CYAJtKobq53eH1YOV58MtJRS/8Ikw9+ilFoKLLRNB67CBFqy86YQQniosbmR49XHAQm0HDU1N3Go4pBT1e5xsePILM4ktyKXwRGD7bk1sSG2Ea3aUq+2wcrrGRw+mISwrgVafbWavBVo1TXVsb1gey+3xrWONpRubULcBDKLM+3Th9aIljXF7Jin1acDLa31d7XWk7TWo7XW87TWz9qmA8/SWl+ttS7tgXYKIUSP+O/O/3L7J7f77PzHq4/TpJsYHTOaQxWH7Mm8J7u8yjwamhucahxNiJ9AdWM1m49vtk8bgg9HtCqOEB0cTURQBAmhCZTUldDU3OTx4/+x9R9cvvTyTj2mpxTXFhPgF4BCdSvA31Gwg7PeOIvcClfr5LrHqubuyYgWmMAqryqPTcc2ERkYaV+Vav10zNPKLM5kUPggr5Zt8JQULBVCCAfbC7eTcTyDZt3sk/Nb37LnjZ4HyKiW5WC52XrHMdCyRigqGirsKw7Bt1OHVq2uhJAEmnWzfSSoIysPr+T5bc+TU57D4YrDXm2XN5TUljAgdADj48az6XjX33Nv7HmDkroSdhTu8GLrjM6OaFmjU18e+tJsNm4b8XQ3otUbo1kggZYQQjgpqS2hSTf5bIsXayTgnKHnEBUURfrxdJ88T3+TU54D4DR1ODpmNAHKbIViBUAAgX6BRAZGev3fKK8yj+TIZAASQhMAz2pp5VXm8cs1vyQx1Cz6yizJ7OARPa+4tpi4kDhmJs1kW/426prqOn2OqoYqPsv5DKDNPoPe0JURLYD65nqnICoyKJKooChyK83/teqGarLLsiXQEkKIvsAawSio9s3S/ryqPPyUH4PCB5E2MI2NRzf65Hn6m+yybKKCouwrCgGC/YMZEWP2pbOmgyzRwdFeDbS01vb9FAHiQ+OBjgOthqYGHlj5AM26mX9d+C8CVACZRX0z0IoNieXUpFOpb67vUp7WJ9mfUNNYQ6BfoH0E0psq6itQKMIDwz26f0Jogj24bR1EWSsPwZR10Gh7YNbTvLdrohBCnACsQMtXS/vzKvMYEDaAQP9AZibN5MvDX3K08iiDIgZ1+lyltaXUNtWSFJ7kg5Z6V2FNIVprEsNcl/rJLs8mJSqlTTHJCXET2Feyz2nqEEwtLW8mwxfVFlHXVGefdrLa2VGg9ZeMv7CjcAd/mfsXRsWMYlTMqD47ojU2dizTB07HT/mx8dhGZibN7NQ5lu5fSkpUCoMjBttHINtTUV/BlvwtbhcIxIXEMTlxstP9I4Ii8FOejwGNjxtPwZGCNoHW4IjB9lE3a3sea1ViT5NASwghbJp1s32UpLDWN0v7cyty7aMz1gfdpuObuCLiik6f65H1j5Bdns3bV7zt1Tb6wk9W/IRA/0BevPBFl7dnl2Vz2uDT2hyfPmA6n+V8RnJEstPxmJAYr+53aCVOW1OH8SEdj2iV1Jbw6u5XWTB2ARcMvwAw01lrj6z1Wru8QWtNSW0JcSFxRAZFMiFuQqdzA3PKc9iSv4UfTf8R+dX5LN2/FK11u1XWH9/0OO/uf9ft7QrFp/M/tX9R8HT7HUfTB05ne+F2RkaPdDo+JGIIX+d9jdaazOJMooKiGBTe+S8z3iCBlhBC2JTVldmT4H1VQymvKo9Tk04FYEzsGGKCY9h4dCNXjOp8oLWjcAcF1QU0NDcQ6Bfo7aZ6TVVDFdsKtjEwbKDL26sbqsmvyXdKhLdcNeYq5g6dS0RQhNPxmOAYDpZ5b/rKsbQDQEhACJGBke2+D6zRT+vfE8yoyftZ71NYU2jP8+ptVQ1V1DfXExcSB5gAf9HuRdQ21hISEOLROd7b/x5+yo/LR13OF4e+oLqxmoKaArf7BlY3VPNx9sdcnHIxt0y6pc3tB8oO8Ms1v2Rn0U6nQMvT/CzLzZNu5pox1xDo7/z+HxwxmJrGGopri+2J8D299Y5FcrSEEMLGcYWZLwKthqYG8qvz7dNTfsqPtIFpXUqIL60t5WjVURp1o0+W2nvT5uObadJN5Ffnu1zNaW0mPTxqeJvb/JSfPV/KUUxwjFdztFpv8wMmT6u994G1BVBUcMsojJUHZNVt6guskT+r/tjMpJk0NDewtWCrR49vam7ivaz3OHPwmQwIG2D/d2ovId7K51o4YSGTEia1uZw//Hz8lJ9TP5XXl3c60Ar0C7S/LkfWqPHhisPsLdnba/lZIIGWEELYOQVa1d4PtI5VH6NZNzutoJuZNJMjlUdc7s3Wnj0lLZtyeJIv05uscgKNutFluQT7ZtIOKw47EhMcQ1VDFQ1NDd5oIkcqjxAbHEtYYJj9WGJYYruBlrVKLjqopTZTXwy0impNvqE1ojV9wHT8lb/H04frj64nvzrfXpJkRJRZoGAFyK5Y+VxTE6e6vD00IJQRUSPaBFqdnTp0xwq0vs77mrqmul5bcQgSaAkhhJ0VBEQGRvokR6t1HhC05Gn9ccMfeXTDozy64VH+tf1fHVYYd/yA8sVSe2/adHQT/sofwF4V31F2eTYKxbDIYR6f076xdL3rjaW11ry661WPN57Oq8xrs7IxISTBHqS44mpEKyooiiERQ3os0Pos5zN7src71vvaCrQigiKYGD/R40Br6f6lRAdHM3foXAAGhg8kxD/EbaB1qPwQm/M3c+XoK9udrhsXN86pn7oydeiONTL5xaEvgN6pCG+RQEsIIWysD6QxsWN8MnVozwNymJ4aHTOaaQOmsTV/K8sPLGfp/qU8veVp9pXua/dcmcWZDAgdQFxIXLsjC72tor6CXcW7OH3w6QAcr2obaB2uOExSeJLH+UJgkuEBtwnxe0v28qdNf+LDgx96dL4jlUec/l3ATB22V+bDHmi1GoUZHze+xwKt33z9G/6141/t3sfqIyvQApiSOKXDAA2gobmBVbmruHD4hQT5BwFmOnd41HC3Af7S/UtNPtfIy9s99/i48RyrOmZfPerNQCs8MJyY4Bj2luwlyC+IEdEjvHLerpBASwghbKwPpNExo30SaB2pPIK/8ndKCldK8d9v/Ze1169l7fVref3S1wE6/BDMLM5kfPx4UqJSvJoU7m1b8rfQrJvtH7r51flt7nOk8kib0aSOWCNa7vK0rDpPjtXB3WnWza5HtEITqG6sprqh2uXjyuvLUag2wcH4uPEcKj9EVUNVh8/dHdUN1VTUV3Q4dWx9gXDMZUoKS6K6sZrK+sp2H7uraBfVjdXMGjTL6fjwqOEuA/ym5ibez3qf0wefzsBw14sfLNYoU2ZJJo3NjVQ3Vnst0IKWLzSjY0f36mIRCbSEEMKmuLaY6OBoBoYPpKK+okvVs9tzpPIISeFJBPi5X/A9PGo4If4h9o1yXaltrOVg2UHGxY4jJTqlT+dobTy6kSC/IOYOnUuACnA5dehqNKkj9qlDN1OD1miLJ7lvhTWFNDQ3uAy0wH1NtbK6MqKCo9rUfRofNx6NZl9J+6OS3WX1ZU55TrtbRhXXFhMWEOY0YmgFQa7+PRxZ04tpA9OcjqdEp3Ck8kibHLkNxzZwvPq4PZ+rPVagtad4jz3g81aOFrTkafXmtCFIoCWEEHbWNiVWtWlvFy3Nq8zrMKDw9/NnbOzYdke0skqzaNJNTIifQEpUCkW1RfZ94vqaTcc3MSVxCmGBYSSGJbaZOqxvqqeguqDLI1olda6nDq3RFk8CLVdTuoD9feAuX89d8rb1wd5esOwNVpBU01jjcqTQYr2vHVmjqq6mch1tOraJ0TGj26z8TIlKoVk3t9nXcen+pUQFRXHO0HM6bH9sSCwDwwaSWZxpf/96c0RLAi0hhOhjimuLiQ2OtX+oFNR4dxueI5VHnFYcujMubhy7i3e7TYi3PsDHx463155qLyFea82v1vyKT7M/7XSbu6O8vpzM4kx7nakBYQPaBARHq46i0Z0PtGw5Wh2NaLmbOrx/xf1c/u7lXP7u5fxk5U+Attv82N8HbvK0yurLnFYcWgaGDSQmOMajHKjucAyS2ps+toqVOrLqX7U3otXQ1MCW/C0uK8hbOU+OW/GU15fz5aEvuWTEJQT7B3v0Gqx8tvIG2z6Hgd6fOpRASwgh+oiS2hLiQ+M7taGwpzozcjM+bjwV9RUcrTrq8vbM4kzCA8MZEjmE4dG2mkbtJMTvKNzB+1nvs/zA8i61vas2H99Ms24mLclMOw0MG9jmg91V/SpPBPsHExoQ6nIbHq01OeU5+Ct/SutK2+RKldaW8lnOZ4QHhjM+bjzTB0znxgk3tqnj1dH7oLyu3GnFoUUpZQ+WfckxaG3v39/ViJYngdbOop3UNNY4FWS1uKql9fHBj6lrqmPemHketN4YFzeOg2UH7eVUXPVnV10w/ALumHwHpySc4rVzdkWHgZZS6hOlVIFS6iHbdaWUekYptVoptVwpFdfROYQQoj+wPpA6ys3pCvvITaRngRa4n3raU7yHcbHj8FN+DI0Yir/yb3dEY+n+pUDP13baeGwjwf7B9lpKA8NNoOU4UmeNOHV2RAvM9KGrqcOi2iIqGyrtz9t6+tAKSu5OvZvHz36cx89+nAdPfRB/P/825/dX/u4DrfpylyNaYCrE7y/ZT0Ozd+p8uXK8+jjRwdGEBYS1m6dXUlvSpqhnkH8QcSFx7QZaG4+ZDc9nDJzR5rbIoEjiQ+Kdnnfp/qWMiR3DxLiJHr+GCXETaNJNbM7fbD+vtySEJnDf9Pt6fdcET0a0bgd+6nD9IiBMaz0HeAv4mS8aJoQQPamxuZGyujJiQ2KJC4lDobw6omUfufFg6nBM7Bj8lJ/Lqaem5ib2lOyxB2OB/oEkRya7/aCtbazl44MfE+QXxNGqox7XlfKG9GPppCam2ssCDAwbSE1jDRUNLflkeZV5BKgAt1u5tCcmOMbl67GCzjMGn2F/Dle3u9ryx5G/nz9xIXFua2lZyfCujIsbR31zvU9rnB2vOk5SWFK7pRa01hTXtR3RAtsIYzs5WpuObWJs7FiXldfBJMRbQWtWaRY7Cncwb9S8Tm11YxV4tZLuvZkM31d0GGhprVvv7TAXsMaflwFneblNQnRJfVN9bzdB9CH1TfXtrsRqrbSuFI0mLiSOAL8AYkNiOwy0ahtrOVp51H5pb5PjzozchAaEkhKV4nIE6nDFYWoaa5zyTlKiUtxOHX1x6AsqGir4zsTvAL4d1apuqLb3RVZpFpnFmfZpQ3CdgJ1bmcvA8IHtrsR0x92IltUXZw45E3A9ohXgF+DRdGVCaILL90Gzbm63kvmEuAmAb/v7ePVxBoQNcAp4WqtoqKCxudFlsDQwbKDbJPr6pnq25m91mZ9lSYlKsQd4S/cvJUAFcOnISzv1GpIjkokIjGBX0S7AuyNafUVXcrTiAOudXWq7LkSv2lO8h1mvzWJvyd7eboroA5qam7jm/Wt4ZsszHj+m9X5wCaEJHSbD3/rxrVz49oX2y9lvnu32PXik8kinRm5aV822WMccA63hUcM5VH7IZWC5dP9ShkQM4caJNzo93tusPrf6Yt5789Bop/pLVkkBxw93V/WrPOVuRCunLIdg/2AmxE0gxD+kzYhWTnkOQyOHehTcJYQmuEyGr2qoolk3Ex3seurQKtOxrWCbh6+m845XH2dg+EBSolLIq8yjtrG2zX2Ka5yrwjuypnJd+abwG2qbajsMtErqSiiqKWJZ1jLmJM9xuS9le6x8tibdhJ/yIywgrOMH9TNdCbSKgRjb79G0BF1tKKXuVEqlK6XSCwq8u3pHCEfpx9NpbG6UQEsAsO7oOrLLs9lesN3jx1hFHeNDzAdFQmhCuzlaDc0NZBZncs7Qc/jdGb/joVkPodGsObLG5f2tGlqt84DcmRA3weVUX2ZxJgF+AYyOGW0/lhKdQm1TLceqjjnd92jlUTYc3cAVo64gITSBAWEDfBZorTu6jtzKXG6ZdAu/O+N3/O6M3/HU3KdITUy138c+ouXw4e5JyQt3ooOjXRYszS7PZljUMPz9/BkcMbjtiFZZdofThhZ37wPr38VdoBXgF8BZyWfxSfYnXtuP0VF9Uz3FtcUMDDOBlka3KbUALeUvXAVaA8IGUFpX6jJA23hsIwrVpn6WI2tvykW7F1FUW+RR7SxXrNG/yKDITk079hddCbRWApfYfr/Edt0lrfULWus0rXVaYmJiV9onhEesXJaOasKIk4OV/N2Z/Bj7iFZwy4hWe1OHuRW5NOpGzht2HleNuYprx1/LyOiRbveP6+zIjbvNiTNLMhkVPYpA/5YEX3uJh1bTR+9nvY9Gc8WoKwDfbg3z3v73iA6O5p5p93DVmKu4asxVnD/8fKcPTqsulfX/tLaxloKaztfQssSGxFJeV05Tc5PT8ezylkBqSMQQpxGtpuYmDlUc8ngD64RQs99h69FCa0Pp9nKK5o2eR2ldKStyV3j0XJ1hjbYODBtofy2upg/bHdGyBb6uRuw2HdvEuLhxbgNJaHnfvbr7VeJC4piTPKczL8HOeq+fiPlZ4Nmqw39hkuFvUUotBT4BGpRSq4GFwOM+baEQHrA+PNor2idODmV1ZXx56EtCA0LJr8l3u31Ka1bCc1yo+UCKD42nsKbQbS0rK/nc8QN7ZtJMNh/f7HKlWWern9u3J2kdaBVl2j+YLFZNI8fAUmvNe1nvMTNppn0T6/Fx4zlYdtDlCEZ3WH1+6YhL7YnvrgT6BxIfEm8f0bLKV3Q10IoOjkaj7UEPmNpPuRW59iCg9YhWXmUeDc0NnRrRatJNbUbOOhrRApOMPyB0AO/tf8+zF9QJVrBqjWiB6y8WxXVtt9+xWFO5x6qdR0LrmurYVrCt3WlDgCGRQwhQAdQ01nDZyMu6vLrPeq+fiPlZ4Fky/He11pO01qO11vO01s1a6x9oredorS/VWnu3dLIQbtQ21rLx6MY2xxuaG9hfuh/oeDuJnlJWV8a7+97l7b1v2y+tp3WEb3x08CMamhvsyd+ebrhcUluCQtmX6yeGJtLQ3OD0Ie7I+lBz/MCemTST6sZqe2KvpbaxlsKawk4FFHEhcQwIG+C08rCwppCi2iL7VIslPiSe8MBwp9eacTyDwxWHnaZzxseNp0k3kVWa5XE7PPHRwY+ob673aOrIMS/IXUV2T7na7zC3Mpcm3WQPPodEDKG8vtxeedzqo84EWtB21Kes3vWG0o78/fy5fNTlrDmyxut7Z1p9OCBsAGGBYQwIHdDpES13tbS2F2ynrqmOmQPbD7QC/QLtQXxXpw0BRkWPIsAv4OQNtIToK97e9za3f3o7B0oPOB0/UHqAhuYGFKrPTB2+tvs1fv31r3l43cP2yxPpT/R2s04KS/cvZWzsWC5OuRjwfPqwuLaY2JBYew5VR8Uqs8uziQuJcxrRsEYAWk8f7izaCWAvLuqp8XHjnWpp/WfnfwDs9aEsSimnFWD1TfU8mf4kkUGRnD/s/Jbzxfpma5il+5cyLnYcE+IndHjfAWED7B/s1khTV0e0ksKTAJz2FLT6wCqoaZ3bCursgVYnpg6h7fugvM4E4O2NaIEJQJp0E8uylnn0fJ6yj2jZRqXcrTwsqSshMjDS5UijNXXYeiZga/5WAKYPnN5hO6YmTmVm0kzGxI7pTPOdBPoHkjYwjRFRI7p8jr5MAi3Rb1ijBFYRPYs1tTIlcUqfmTo8UHaAIRFD+Gz+Z3w2/zMuHH4hm45tcjsNJbxjX8k+dhbtZN7oeQyLGoZCdWpEy8rPgo4DrYNlB9tUEo8LiWN0zOg2gdZ7+98jLCCMs4Z0rhqONdVX11THV4e+4pWdr3DtuGuZnDi5zX0dN5d+Mv1Jvin6hkfOeISwwJZVXEMihxARGOHVPC3HPveEY0mBI5VHCPALsOdudVZqYioDwgbwXlbL1FzrQMoKtKygLrssm6igKKd/63bb62KlJHiWo2W1IzUxlaX7l3r1///x6uOEBYQRERhhnscWaLd+juKaYrd1sMIDw4kMjGzzBXV38W6GRg7tMIgE+N2Zv+OfF/yzi6+ixXPnP8cvZ/2y2+fpiyTQEv2G9eHgKtAK8Q/h1KRTKagp8GklZk9ll2czInoESeFJJIUnMXvIbIpri70+ZSOcOdbyCfYPZnDE4E6NaFn5WdCyz527QCunPMfl9NPMpJlsyd9iX2lW3VDNJ9mfcFHKRU5Bjyesqb6Vh1fyq7W/YkLcBH4203WN6JSoFI5WHWVZ1jJey3yNGyfcyHnDz3O6j5/yY2zsWK8GWlafXzLyko7vjBmFKqsro6axhrzKPAaFD/J4JWZr/n7+XDHqCtYeWWuf2rNGGq0AyJqWdBzRSolK8Xh124BQM73WOo+pvK6cYP9gQgJCOjzHvNHzOFB2gB2FOzx7YR6wamhZryMlOoXy+vI2dcXcFSu1OI4wWvYU7/F4f0A/5eeVyusBfgEn5IpDkEBL9BP1TfX2KcP0Y+lO39oyizMZGzuWQRGD0GivbpvSFc26uc2HsH1K6bjrFWmi+xqaG1h+YDlnDz3b/sHSXiHH1qwNpS3tjWhV1FdQVFvkcvrp1KRTqWmssU8XfpbzGdWN1V3KYbE+7H655peg4cm5T7pNNreW+P967a+ZkjCF+2fc7/J+E+InsLdkb5uVel3hqs87YuUF5Vfnd6uGluXKUVfSpJvs+zi2Lt0QExxDWEBYy4hWebbH04ZgprXiQuLajPq421DalYtSLiLEP8S+GtYbrBpaFld7D0LLlLg7A8Odi5ZW1ldyqOJQr2/EfCKRQEv4XHl9OY9vetyj1V9b87fy8jcvtzm+v3Q/jbqR2UNmU1JXYk9+11qbfd/ixrms0dMb8qvzqWmscfpjPyRiCIPCB7ld+u9rKw6v4P2s93vlucEEwy/ueNGj+76f9T5fHfqq08+xJncNxbXFTgFNSpSZTvNkyqb1xruRgZEE+we7DNxdJcJbrH3hrJHX97LeY1jkMKYNmNaJV2MMiTBTfXVNdTxy5iMMjRzq9r5W8BAeFM4TZz/hVP7B0bjYcdQ01nCo4pD92Lv73uXjgx93un2u+rwjjnlBuZW53Q60Wk/NtQ6klFL2lYfVDdXkV+d7nAjv2ObWU4ftbb/TWkRQBBcMv4APDnzAT1b8xH7pSp9b8qvz7X0J2PObWn+xKKktaTcIbr0Nj1WLUAIt75FAS/jcqtxV/HfXf1l3dF2H930q4yn+kvEXe/FIizXVYa0kswKWvKo8KhoqGB833uX2Hr3h/9u78/Amq+wP4N+bvemS7jtQ2gItiLKUgsrmriiy6Oi44DbKb8ZlRMER911x10HGbXTGUccdEJRxRRZB2gICCm2h0Ba67+mSZr+/P968L0mzNG2TLnA+z5OnTfImublNk5N7zz3XU7ItYwxTEqegoKagR9vCBMrbv72NJ3c8iQ5LR78/NgB8VPQRXt39qtvftavNxzbjgZ8fwKO/PNrjKeBdtbuglqulbVcAIRAyWA3d5u6JqwudP5AYY16rw/tauRalicLoqNEoqCnAsbZjKKgpwLzMeb2aFpExGa4ccyX+OvGvbtOAXaXr0jEjZQaem/kcksKSvB4nJqyLqxk3H9uMh7c/jOVbl2NX7a4etW9tyVrEaGIwPWW637cR/0/LWsvQZGzq9YpDZ+LU3Paq7WgyNrn9XcRaWj1NhJfa7KGCuq/tdzy5duy1GBY+DCUtJShpKcGeuj296nNAqAVWb6h3CbSSw5KhkClcAi07t3cbaMVr411SLsT32jFRY7zehvQMBVok6MRv/542yHVW3lou7eC+s2any3VFTUXQKrSYljQNyaHJUqBV1Hh8O5LBMqLlbbRjSuIUtJhapNG4/sI5R5m+DJ3WTnxX9l2/PrZIfPP2lRtU1V6F+3++H5HqSDQZm/BzhecK696I1cCd80V8FXJ01mJsAeC+BF6spdVVqb4Ucib3OsI0JXEK9tTtwRcHvwADkwqG9saSyUtwy6m3dHucSq7CP879h7SRsjfiUvqipiKpz7Ois5Aanoq/bf6b31PvjZ2N2FKxBXMz5vZon0Jx6lBc2dbXES3g+NTcq7tfBeD+vycFWl1WJPorQeseaOlNer+SxUVjY8bi80s/x5fzv5ROPe1zUaOxETZucwm05DI5hocPd5k6bDO3wcZtvke0QhNcUi6Kmoqk0iIkMCjQIkEnfsh1l4D7ZcmXkDEZNHKNW8K7OD0oYzJMSZyCnbU7Yed2FDUXQcZkGBU1Cjq1Dmq5esBXHpa1liFEEeL2RuVt6X+wNZuapRVSgcwR8ZfFbkFJsxBcegu2LTYL7tl8D2zchvcueg8xmpget9W5GrhIPC+uxvNGHGlzToYHgFiN5+rw5a3lSAlL8To9NyVxCow2I94/8D5OTz5dKkMwGCjlSmToMvB7w+9Sn78460W8OOtF6M16LN+63K/8ra+PfA0rt2JexrwePb5WqUW4Khy7a4UvVYEItMSpObFsRdcyGslhyWiztOG3ht/AwDA8fHiP7j9BmwC9Se9S6FVv0vepknmYKqzHfS4S3+Occ7QA983FxSK8PnO0unxBLWoqwpioMSdsYvpAoECLBJ34DctXoGWz27Du8DqckXwGJidOdhnRsnM7ipqKpJwBcWToUPMhFDUWIS0iDSGKEDDGhBU0Az11qPe8qiklLAUpYSn9HmiJ/T85YTJ21+3uNugItFJ9Kcx2MwDv9Zte2vUS9jXsw+NnPI50XTrmZszFlootfn/T71oNXBSvjUeIIgSl+lKftxcDra5L/uO0cZ5ztLpJqM5JyAED87uIZ3/Lis5CXk2e1OfDI4ZjTPQY3Jd7H3ZU78Bbv73l8/acc6w9vBanxJyCzKhMn8d6kqBNQEV7BYDeFyvtal6mEPDJmRzDwlxHGsVgblvVNiSHJfu1UtCZpxIPrebWHo1oeTImegzun3q/X33uTHyP6/plLk2XhmNtx2C1WwEc31aquxwt8T7F4s9ZMZSfFUgUaJGgsnM7jrYdhUqm8rhBriivOg+1hlrMz5yP3MRcHNYflkYSKtoqYLAaXAItQNhIuqi5yCVp09MQf3/zNLIich6N6y9iYHXHxDsgY7KgbAfiiziKNTx8uMcRrYKaAnxQ+AGuzroa56edD0DIubFyK74+8rVfjyFWA+8a/MiYDCMiRnQ7dehtRCsmJAbNpmaXfDE7t+No61Gf0086tQ5joscgXBWOs4ef7ddz6E/i/4xznwPAwlELMTd9Ll7f87rPqf4DTQdwqPlQr4NIMXBRyVTS6s6+mpI4BSlhKUgNT3UbaRQDLU+1z/zRtYK6xWZBp7Wzz4EWACzIXOCzzy02C67++mpsOrZJukwsNeE8dQgII1pWu1WqOSi9rv0JtAy1UvFnsbAtCQwKtEhQiSvwxM1GvY1qrS1ZiwhVBGYPmy1t+7CzVhjVEkdBxP3dksOSkRKWgu/KvkNNR41roOUhabU/mWwmVLVXeR3tyE3Mhd6kd6lkHWylraVQypSYEDcBZySfgXWH1wVkab+/CpsKoZarcUHaBShrFXLFnG08uhFquRp3Tb5LuiwjMgPjY8dj7WH/ijz6WgXoXDHdG+mbv7rL1KEjCHAe1arpqIHRZux25dry3OVYMWMF1HK178YPgIvTL8bSyUuxNGepy+WMMdydczc4uNv0vbMvS76ESqbChSMv7NXjix/uyWHJkLHAfAzJmAxPnvkk7su9z+0651Gznq44BNyn1/zZfsdf3fX5oZZD+K3hN5fV2HWGOihlSrcpwdnDZiM2JBYP/PwAOiwdfo1oOadcFDcLgR6tOAwsCrRIUIlTNuJ2KJ4CLb1Jjx+P/og5I+dALVcjOyYbocpQFFQLU2zFTcVQMAUyI49PUeQm5kqJ884b7MZr41FnqBuQlX0AcLT1KDi4zxEtwL3oajCV6cswPHw45DI55mfOR62hFnnVef32+MVNxRgVOQrjYsbBzu1uQebO2p2YEDfBbTpnXsY8HGo+5Nd2MeKIlafRihERI1DVUQWzzez19k3GJsiZ3G25fqzGPdASH0vcS8+byQmTMTO1Z5Xg+0uUJgo3nHKDx5pcsSGxiAuJ8/qlyGwzY0PpBpwz/Jxej+g4B1qBlJOY47LqVBShijheQb2HKw4BuK1o9nf7HX/56nNxlMt52l8sVto1SI3SROG5mc/haNtRPPbLY1KOVqQm0utjO6dcFDYWQiPX9GrUj3hHgRYJKvFDaWL8RMSHxHt8I/mm9Bshl2XUfABCheDJCZOlYKSwqRAjI0e6jAw47yrfderQYrdI3+T6m/SB72VPu8TQRAwLH9a/gVZrmfTGedaws6BT6/otKZ5zLuTXxWRJeR/OrwG9SY/ipmLkJOa43fbCkRdCJVP51dby1nK3fQdFabo02Lkdx9qOeb19k7EJkepItw8uT0VLfY2enSjGRI/xGmj9dOwn6E36PuWeBSvQ8kaspQX07u+mVWqFrWqCMKIl8tbn4oiw87R/bUet27ShaEriFNw24Tb8r/R/WH1oNSJUEd1WbhdTLoqbizE6anSvK/UTzyjQIkFV3loOrUKLeG281zeStSVrMSpqFMZGj5Uum5IwBWWtZag31KO4qRjZ0a6b1YqBVrw23mVYPFErrO4K1srD7gI48RunrzfzKYlTsKt2l9fpu4bOhoDtiWa1W3Gs7Zj0LV4lV2HOyDn48eiPXvPlfGk1t/pVeFZU3VGNVnMrsqKykByajHBVuMtrYGftTnBw5Cbmut1Wp9bhnOHnYEPpBuyt34vf6n/Db/W/eS234K3PpUKOPqYPu26/I4rTCnvwuQRarWXQKrQByy0ajLKjs3Gk5YjHUcC1JWuRoE3A1KSpvb5/MecpECsO/SU+Vm8DZOcK6oEe0QK893lxUzHGxozFGcln4MvDX8JmtwlV4b0EWgBw8/ibcWbymajpqPGrYr+YclHUVOQyQ0ACgwItElRlemE0hTEmbZDrvES6pLkEvzf+jvkZ811W6U1JEgKpb8u+RX1nvVvxvMTQRGToMnBa3Gkul3dNWg2kdYfXYdYns3xWLS/VlyI+JB6hylCvx0xNnIo2cxv+V/Y/t+u+LfsWZ316Ft7Y90ZA2lzVXgWr3ery4TI/cz7MdnOvqlL/5fu/4N4t9/p9vBhUZcVkSa8B50CroKYAGrkGp8Se4vH2C0YtgN6kx7UbrsXVG67G1RuuxqINi9wCUV+rAMXRvNJW7ysPm43NbvlZABCjiYFCpsC2qm3SY5bphcc6kZe/j4keAyu3utV8azG2YHvVdszNmNunUQ/xb5KuS+9TO3siIzIDOrXOrSSCv5wrqIsjWv5uweMPT31u53YUNwv7Ds7PnI86Qx12VO9AnaHOZ50rGZPhmRnPIEGbgKRQ78VrRfHaeFS2V6LN3Eb5WUFAgRYJKucPQHGDXOeNlb88/CUUTIFLMi5xuV1WVBbCleH4oPAD6bZdvXnem3h42sMul4lvooEu8VDSXIInfnkCHByfHvzU63H+7KN2Xtp5mBA3AU/88oRL2YHy1nI8sv0RqOVqvL7ndfxS1X0l/e54yifKjs7G6KjRPZ4+NFqN2N+4H5srNqOmo6b7G0AItBgYRkWOAiBUmz7YfFBafl5QU4AJ8RO87t83LWka/n3hv7HqnFVYdc4qLBq7CBXtFS7TgK3mVjQZm7zmlYSpwhAbEtv9iJaHb/5KuRK3nnYrvi//Hp8d/AyA982kTyTiCHLXVXDiitm+5p4NjxiONZeuwVnDzurT/fTELeNvwccXf9zr5HvnzZfFES1/t+Dxh6c+r2irQIelA1nRWdK0/3v734PJZuo2YIzSROHjSz7GU9Of6vaxnUfHKNAKvD4FWoyxTsbYJsfpT4FqFDkxGK1GYQWe40NJfCMRRzQsdgvWH16Pmakz3T7k5DI5JidMljaC9TScnRCa4JbkGaOJgZzJAzqiZbAYsHTzUoQqQ7Fw1EJsr9ruMZATK7B3l0iqlCnx/KznoZKrsHTzUnRaO2G0GrFs8zIoZAp8OvdTpOvSsXzr8j5PgYqBnHObGGOYlzEPvzf+LhUS9cfhlsOwcRs4ONYfXu/XbYqaipCmS4NWqQUgbP9isplwtPUomo3NONh80OO0oXNbxaTymakzcfmoywG4Fn0t13c/XSvueehNs7HZa1HHP43/E85MORMr8lfg17pfUd1R3auE6qEkNTwVWoXWbaq/oKYAIYoQnBLjeQSyJzKjMvt1VFCr1CI1PLXXt08ITUBDZwMsdgv0Zj0YmJRgHwhinzsv/pBGhKOzpGl/cSszX1OHotiQWGn62xcx5UIs/kwCq68jWpWc89mO0zsBaRE5YRxrO+ayAi8lPAWhylDpjWRb5TY0Ghu9JtWKCdLJocl+50LIZXLEhsQGLNDinOPxHY+jrLUMz858FjedchPs3I71R9wDjRZTC1rNrX6NdiSGJuKZGc/gUPMhrMhfgWcLnkVRUxGenv400nXpeHH2i+i0duJvW/4mjf70RnlrOXRqnVsQcUnGJVAwRY9GtcS/27DwYfjy8Jd+5ZEVNRW51OQRp4ALmwqlPd6cFzZ0Z6RuJGI0MS6LCfzZvy5Nl+a1lpbZZkabpc1rLouMyfDM9GcQrYnG7T/e7nNV6YlCxmQecyrza/IxIW6C14r4J7IE7fGtavQmPcJUYQFNGhf73HlEq6ipCAqmQEZkBoDjRVkB92KlfSHel1j8mQRWXwOtRMbYZsbYasZYWiAaRAKvobPB7z3u9tXvw5t735RO7/7+LtrN7R6P/erIVy7Hrjm0xuXDt+sHoIzJMCbq+BvJ2pK1iNZEY3qq5w1pxZGOniZn9rSW1taKrV6nwlYfWo2vj3yNv5z2F0xNmooRESMwKX4SvixxDzR6umHt9JTpuGX8LVh9aDU+P/g5/nTKn6QpmYzIDDw07SHsqt2Ff+z5h1/3l1ed5zZC5a14arQmGjNTZ2L9kfV+b95c1FSEMGUYbhl/C8pby7Gnfo/P4/UmPao7ql3+fumR6VDKlChuKkZ+TT5CFCEYFzvOr8cHjm/OvbNmp9T/0r6DYZ73HQSED5AWU4u0p6EzcYGDr21KojRReGHWC9JCgBM90AKEUZTi5mKpVEqTsQklLSU9CoxPJGIwUtNRI1SFD2B+lkjMYRT7vKipyGXF9djosdKIUyC3dRKnISkRPjj6Gmilcc5nAXgTgNuIFmNsMWNsJ2NsZ319fR8fivTWq7tfxdLNS7udJjrScgQ3f3czXtvzmnR6edfL+Lj4Y4/H3rf1PpdjH97+sFSRGPC8DF58827obMDmY5sxN32u16XHo6NGY0zUmB7ngyRoE/yectt4dCNu/fFWPLHjCbfrLHYLVv66EjkJObhl/PFNfednzkdZaxn21u91OV58vuIqN3/cOuFWzE6djRkpM3D7xNtdrpubMReXjboMb//2NrZWbPV5PwaLAXdsvAOPbH/ErU3egoL5mfPRZGzCtsptfrVVXJF0QdoFCFGEdDsaJgbUzitGlTIlMiMzUdhUiIKaAkyMn9jt0vOupiROQV1nnTQVWNZa5nPfQeB4jpqnDb2rO6oBdD8VMyF+Au6Zcg+SQpNO+KlDQPhf7bB0oKJN2CpH3BbrZA20xNdHnaGuxxtK+ysrOgsGq0Hq86KmIpf/H8YYbhh3A9Ii0gK66jVGE4PMyMxBW/dtqOtToMU5b3D8/BaAW2IK5/wtznkO5zwnLq77eWISeAaLAd+WfQtASDz3ddzSzUsRogjB95d/j18X/YpfF/2KyQmTsbbEvTr32sNrIWdy/HD5D/h10a/4+Y8/Qy1XY03JGumYstYyxIfES/k5gPBG0mntxBt734CVW33W4pHL5Pj80s9x+ejLe/ScE7QJqOmo6XZqq6KtAg9uexAKpsDPlT+j3uD6ZUCc2rxu7HUuUwTnp53vMdAobS2FQqZAUlj3q3xECpkCfz/771h1ziooZAq365fnLseYqDG47+f7fCagf1v2LTqtndjXsA9HWo4AANrN7ajvrPcaFExPnY5oTbRf04c2uw0Hmw8iKzoLWqUW5484H9+UfuOz1EPXiv6irOgs7Kvf1+vREXGks6BWyNMqby3vNvARE3zFytfOxOkxf77NX519Nb697NuTYnpF7DOxf3ozAnkiEUeQag21aDW1BrSGlkjs88KmQjR0NnhccX1pxqVYv2C9x/eL3pLL5Fgzbw0uSb+k+4NJj/U60GKMhTHG5I7fTwXgXtyGDLjvyr9Dp7UTw8KHYf1hz9NEnHM8lfcUDrccxooZK5AYmgiFTAGFTIH5mfPdpomsdivWH16PGSkzkBCaAIVM4VLzyGQzAfC8Ak98I/ns4Ge93pC2OwnaBHRaO9Fu8TzlCQh5Ocs2LwM48No5r3nMu/I2tRmqDMV5I87DN2XfuGwnU64vx/Dw4T1+A2SMeU0K1ig0eGHWC7DarVi2eZnXab61JWuRFJrkkndV3uY7SVwpU2Ju+lxsPrZZ2hPNm6NtR9Fp7ZT+fvMz58NgNeCHoz94vU1xUzHiQ+IRExLjcrn4rR3o3ejIiIgRiAuJQ0F1gbTvYHdTeXEhcYjWRHus41bUVIRIdaRfycUATuiyDs4yIjOgYAqpz3bW7MSk+Ek9HoE8UUSoIqCWq1HbURuQDaU9Efu8uKkYB5sOAhAWkJChrS8jWmMB7GSMbQGwEsD/BaZJJJC+LPkSIyJGYFnOMjQaGz1OE60tWYt1h9fhz6f9Gacnn+5y3fkj3EdvtldtR0Nng9to1PzM+Wgzt+Gnoz9JK/C6fgCKbyR2bu9TZWlfxHwDX9OHL+x8Afsb9+PJ6U/izJQzMTF+osvIXZOxyefU5vzM+eiwdOCH8uOBhq/NpPsiTZeGR894FHvr9+LVXa+6XX+09Sh21+3GFWOuwPTU6Vh/ZD2sdqtfFcznZc7za/NmcRpQDLQmJ0zGsPBhPkfDCpsKPY4SifehVWgxNmas2/XdEfO0CmoLju872M2IlljDy9OmveKU6MkSQPlLLVdjZORIFDUVoaGzAYf1h0/aaUNAeA2JaQnBmjoU+7ywqVAaER4dNTrgj0P6V68DLc55Pud8Iud8Jud8Fud8b/e3IoFS21GLOzfeiev/d710emnXSy7TZcfajmFn7U7My5iHGakzPE4TFTcV46m8pzA1aSr+71T3WFmr1OKCtAtcponWlqxFlDrKbT5/atJUJIUmYW3JWjSbmoUVeF0+AFVyFTIiM/q0IW13uu5L1tW3Zd/io6KPcN3Y63D28LMBCIFTqb4U+xr2AQC+PvK1z6nNnIQcpIal4qVdL0n9788UVm9dmHYhrsq6Cu8deA8bj250uW5tyVrImAyXZlyK+Znz0dDZgG2V21DWWgYGhuERw73e76goYQ9CcWsPbwqbCqGQKZChE1Y/iSUiCmoKcER/xO34NnMbSvWlHmvyiMHXpITej45MSZyChs4G/HRMKB7rT4A7JnoMDrUcgsV2fFTQYrfgUPMhl5WR5Ljs6GwUNRWd9PlZooTQBNQYhGT4YEwdAkKfFzcVo7ipGClhKUEJ6Ej/ooKlQ5DFbsHftvwNv1T/Ik3xWewW/Ov3f+E/B/4jHfdlyZeQMRnmZsz1OE3UYenAss3LEKGKwIoZK7wuVRaniX48+iNajC346dhPuDj9YrfkY/HDfnvVdmnTYk81pa4fdz3umnxX0N5AfFWHF4uCnhZ3GpZMXiJdLiZ4i6sJ15as9Tm1yRjDkslLkK5Ll/4GuYm5OD/t/KA8JwBYlrMM42LG4cFtD0rJsja7DesOr8MZyWcgXhsv1SRbW7IWZfoyJIcley0GKrpo5EUobi72OQJY3FSMzMhMl7/5wlELEaGKwPIty6XpYkCYihaT8s8Zfo7bfYUqQ7H41MVYNHZRj56/MzFP67NioYioP4FWVlQWrHarS2BYpi+D2W6W9mEkrsZEjUF9Zz2+Kfum1yOQJ5J4bTyO6I/Axm1Be/8S+zyvJs8tP4sMTRRoDUErf12J3XW78ejpj+KdC97BOxe8gw/nfIhzhp+DV3a9gj11e2Dndqw7vA6nJ50uJXGK00QbjmwA5xyPbX8MR9uO4tmZz/pcwTIpfpI0TfR16dew2r2P9MzLmAcOLpUk8LQCb27GXFw79tq+d4QX3gIto9WIpZuWQilT4oVZL7iMpoQqQ3Hu8HPxTek32FO/BwebD7rUrPHkgrQLpP5/54J38Nb5b2FcTPAShVVyFV6Y9QLAgWWbl8FsMyOvJg+1hlrp76GUKXFx+sXYVLEJvzX85tcImzhK4VwE1BnnHIVNhW6jU3HaODw9/WkUNhXi+YLnpcs/KvoI35d/j79O+qvXxOk7Jt6BM5LP8ONZezYsfBjitfE4rD+MUGWoXyuwPG1qLRWEpBEtj8T8oJ+O/YRJCZMCmoA9FCVoE6Q9QoM2ouXo8yZjE30BOEFQoDXEbD62Gf/6/V+4csyVmJM+R7qcMYbHz3wciaGJWLZ5Gb4r+w7VHdUuwYI4TbS2ZC0+Lf4U/yv7H+6YeEe30wHiNFF+TT7eP/A+sqOzva7QGhYxDJMTJqOstQxKmRLJYcmBeeI9oJKrEK2Jdgu0ni14FsXNxXh6+tMea9DMz5yPNksb7t96P1QyFS4aeVF/NdlvqeGpeHL6k9jfuB8v7HwBa0vWIkIVgdnDZkvHzM+cD6vdisr2Sr9KTYyJGoNwVbjXQKuhs0F40/cwDThr2CzceMqN+KT4E2w4sgG/N/yO53c+j1mps3DDuBt6+zS7xRiTRrXSIvzbd3BE+AiEKELcAi21XH1SlGvoDTE/yM7tPiv4nyycF0wEcvsdZ845WfQF4MQwqAMtfypPB5vFZoHZZobZZnbJ7RgIVe1VuP/n+5EdnY17ptzjdn2EKgIvzn4RTcYm3Lf1PoSrwqUcJNH8zPkobi7GivwVmJ4yHTedcpNfjz0vcx4YGCrbK7sd6RFHV4aHDw9o5eSeSNAmoLqjWvrbrTu8Dp8f/Bw3j78ZM1JneLxNTmIOUsJSUNFegbOHnz1ocyPOHn42rht7HT4q+gjflX2HOSPnSAUNAeGNWpzi8WdKTdzuyFugJZVp8DKNccfEOzAxfiIe/eVR3L3pbsSFxOGp6U/1ek85f4lfELrb8kgkl8kxKmqUS6BV3FSMUZGjTvqRGm90ah2SQ4UvSyd7fhYAl/0Fg1GwFHDtc9p38MQwqAOth7Y9hFt/uNXvytWB9t7+9zDpg0mY/MFkTP5gMiZ9MAn/2f+f7m8YJE/ueBJ2bseLs150+WB1NjZmLO6dci+s3Or2AQwI+TgqmQoxITF4evrTfn8YJoYmYlrSNChkClw88mKfx54/4nxoFVqXjYz7W2JoIrZVbpP+dg/8/AAmJ0zGbRNu83obGZNhXoYQRAZrRWSgLJm8BKfFnQYbt2H+qPlu14vt9/dvkJuYi6NtRz3W6hJX6nkbxVTKlHhu5nPQyDWo76zHC7Ne6JcgVfzgT9el+32brChh5SHnXJoSpWrYvmXHZCNMGUYf+uifES1A6PNIdWRAq7+TgTNov8bVdtRi/ZH1sHM7Vv66EndPvrvf2/B9+fcYETFC+tD6pvQb/Lfov7h27LVB/7beldFqxI7qHbg662oMi/C+1QgAXDHmCsRqYz1+A9WpdXjzvDeREJrgc8sRTx6a9hCOtR9z28i5K61Si1XnrHKrn9Sf7ph4B06NO1U6r5QpMS9jXrcjF9ePux7DIob1KX+oPyhlSqw8eyV+a/jNY17Y5aMuR5gyTNovsjvOeVpzM+a6XFfUVITUsFSEq8K93j4xNBHvXvAumk3NLv0eTMPCh+HVs17FpPhJft8mKyYLnx78FJXtlZAzOVrNrS6Vt4m7uybfhXpDPY36wTXQCtaIFgDcPflu1HfWU8mRE8Sg/c8Rg6zZqbPxr9//hUnxk1zyUILNYDFgf8N+3HDKDbh5/M0AhA+T+7beh121u/p9GH1f/T5Y7BbkJnWfJ8EY87jaS+Tvh29XwyKGdRvk9fUxAmVU1Khe7UKvVWqHTHXkKI17iQ2RUq50C5h8GR01GhGqCK+Blj9FE4NRfLY7XafGuyPmvBQ3FUtflmhEy7cRESP8np490UVroqFgCli5NagjWsMjhvssy0KGlkE5dcg5x5clX2JS/CS8MPsFZEdn44GfH0BVe1W/teHXul9h5VZMSTgeUJ0z/ByEKcP82rIk0PJr8iFjMkyMn9jvj01OfDImQ05CjlueVoelA0fbjp4wy8wzozIhYzIUNhWiqKkIDIwKQhK/yWVyxGpjoZKpoJFrBro5ZIgYlCNae+v3oqy1DDedchPUcjVenPUirvjqCizbvAzvXfiez81jAyW/Jh8KpsCE+AnSZSGKEFyQdgE2lG7A/VPvR6gyVLqupqPG4/YeogxdhsfRoA5LB3bV7pJ2a2dgmJgw0W3pcEFNAcZGj/U5fUNIX+Qm5WLjsY2obq+W9muUNoY+QbYBCVGEYGTESGlEa0TECJe9OAnpToI2ATa7jab1iN8GZaC1tmQtQhQhUvHHYRHD8PiZj+PuTXfjpV0v4d7ce4Pehp01O3FK7Club8LzM+fji0Nf4Nuyb7Fw1EIAQGV7Ja5YfwVaza1e7y9Bm4BvL/vWbRXey7texifFn7hcdmnGpXhq+lPSeXGz4EXZvS/wSEh3chKE6d78mnzMy5wHzjk+O/gZGNgJlcc0JnoMdtXugpzJ+y2fjJw4MiMzIWcDs5qaDE2DLtAyWAz4puwbnDfiPJcRo/NGnIdrs6/FB4UfYFLCJJw34rygtaHD0oH9jfs9lj44Le40pEWkYW3JWiwctRAWmwXLNi2Dndvx9vlvexxx2lO3ByvyV+CX6l8wPeX4BsUmmwkbjmzAWcPOwv+dJmx/85/9/8F3Zd9hee5y6b721O2B1W6l5dUkqEZFjUKkOhIFNQWYlzkPa0rW4KsjX+HW025FnDZuoJsXMNnR2dhQugGAsHCEkJ5YnrscNm4b6GaQIWTQ5Wj9ePRHdFg6PC6vv3vy3RgfOx4Pb3sYx1qPBa0Nu2t3w8ZtHgMbxhjmZ87Hr3W/ory1HC/uehG/N/6Ox898HNOSpmFczDi30xWjr0CkOtItt2vj0Y1os7ThqqyrpGOvyb4GRpsR35Z9Kx1XUFMAOZNjUoL/q6sI6SkZkwmbNdcUoLipGE/nPY1pSdOw+NTFA920gHJOfqeSBaSnNAqNyyAAId0ZdIHWlyVfIjUsVZrGcKaUK/H8rOchYzIs3bzUZX+1QCqoKYBC5pqf5WxuxlzImAwP/vwgPiz8ENdmX+tzhE0pF7ZF2Xh0o7R9AyBMkSaFJmFq0lTpsvGx45GuS3cJygpqCjAuZhz9c5Ogy0nIQVVHFW778TZEqCLwzIxnBqzobLA4B1e04pAQEmz9PnVY3lqOj4s+9jj0aud25NXk4bYJt3lNNEwJS8HT05/G7Rtvx20/3ua1WGFSaBKuG3tdrz4kCmoKcGrsqQhRhHi8Pl4bjzOTz8TWyq0YHzverxpf8zPn48PCD7GhdAOuyroKNR01+KXqFyw+dbFLTS5xxOylXS/hiP4IErWJ+L3hd1w/7voePw9CekrcZqW+sx7vnP+OX3sIDjVRmigkaBNg5/YT8vkRQgaXfg202sxtuPWHW1HdUe11pU9KWEq3VblnDZuFOyfdiff2v+dxpR/nHK3mVnRaO3HrhFt73MYDTQdwy/hbfB530yk3QW/W4/mZz/u1CjIrOgtZ0VlYW7IWV2VdhXWH14GDe9zOZm7GXLy6+1V8WfIlpiZOFcpMUH4W6QcZkRmYkjgF5ww/Z8BroQXT3Iy5lGdDCOkX/RpoPbL9EVS2V+JfF/6rz/Wgbh5/s1RItCvOOR7c9iDe2PsGJsRP6FGV7921u/3aQDUnMQcfzvmwR22enzkfK/JXoLipGF+WfImchBwMC3cv+RAbEovpKdPx1eGvwDmHgimofhbpF4wxvHvBuwPdjKC7c9KdA90EQshJok85WoyxGxhj2xlj2xhjPjO1m4xN+L78e9w56c6gBw2MMTww9QGk69Jx39b7UGeo8/u2BTUFUMqUQVn2PWfkHChkCjyx4wkcbTvqc+RufuZ81HXW4ZPiTzAudhzV+iGEEEKGoF4HWoyxKAB/BTAbwLUA/u7r+JqOGsxOnd1vuUZapRYvzX4JndZO3LP5HljtVr9ul1+Tj9PiToNGEfiqv1GaKMxOnY299XsRogjxmUA/K3UWItWRMFgN3Y6uEUIIIWRw6svU4VQAWznnZgCljLEwxpiac+5xKaBSpsST05/s182Y0yPT8dC0h3D/z/fjotUX+bVlQnlrOf582p+D1qb5mfPxw9EfcEHaBT5HqcSVih8WfnhC58oQQgghJ7K+BFrRAJqdzusdl1WLFzDGFgNYDADJI5KhUwdvt3Nv5mbMRZu5DXvq9vh1/Klxp3abjN8XZ6aciVvG34IFmQu6PfbGcTdCLVe77LdICCGEkKGDcc57d0PGLgRwIed8ieP8HgBTvY1o5eTk8J07d/aymYQQQggh/Ycxtotz3ucppb7M4+UBmM4YUzLGhgNo9xZkEUIIIYScjHo9dcg5b2aM/QPAZgAcAK2XJoQQQghx0qc6WpzzdwGc+EV3CCGEEEJ6YdDtdUgIIYQQcqLodTJ8jx+IMT2AQ/3yYH0XC6BhoBvhJx2EFZ+DHfVpcFC/Bgf1a3BQvwYH9WtwjOGch/f1TvpzC55POOeL+/Hxeo0xtjMQKw36A2PsraHQr9SnwUH9GhzUr8FB/Roc1K/BwRgLSKmE/pw6XN+Pj3UyoX4NPOrT4KB+DQ7q1+Cgfg2Ok65f+y3Q4pyfdJ3bH6hfA4/6NDioX4OD+jU4qF+D42TsV0qG9+ytgW7ACYj6NDioX4OD+jU4qF+Dg/o1OALSr/2WDE8IIYQQcrKhES1CCCGEkCA5aQItxthExtg2xtgWxthGxlg6E6xkjG1ljH3FGIt2HBvtOL/VcT1zXH4pYyzPcfk1A/uMBoce9usCxlghY8zY5T6eYIyVM8Z+GJhnMbgEqE/fZ4xtYoztZIzdNTDPZHAJUL9uYoz94vi5cmCeyeASoH79ztGnmxhjnYyx8QPzbAaPAPUrfWZ10cN+fYUxtsNxWu50Hz37zOKcnxQnAIkAwh2/zwHwPoALAbzjuOw6ACscv68AsMjx+7uO42QAigGEA1AC+AVA5EA/r4E+9bBfYwBoAJR0uY8kAOkAfhjo5zMYTgHqU5XjpwJC/brwgX5eA30KUL9uApA60M9lMJ0C0a9d7uv3gX5Og+HU136lz6yA9Osop778BUCG43yPPrNOmhEtznkN57zNcdYMwApgNoCvHJetBzDT8buny2MB1HPO2zjnFgAHAeQGv+WDW0/6lXPeyDk3eriPagD24Ld2aAhQn5odv2oAHAVgCGabh4JA9CuEfV0/dnwTPjvITR4SAtSvoqsBfBykpg4pAehX+szyoIf9esjx0w7A5jj1+DPrpAm0RIyxUABPAXgeQDSAZsdVLY7zABDlOC9eHgOgHkAsYyyFMRYBYLrT8Sc9P/uV9EBf+5Qx9hmAIwB+5pzbgtTMIaeP/foHzvl0ANcDeJ0x1ueq0SeKAL0HXAPgvwFv3BDWh36lzywfetKvjLFFAA5zzst681j9WRl+wDHGlAA+AfAM5/wAY6wJQKTjah2Od3Sz43yL42cT55wzxhZDGGbsAPAbgKr+a/3g1YN+JX4KRJ9yzv/AGNMC2MIY+4RzfiBoDR4i+tqvnPMGx89jjLG9ADIB/Bq8Fg8NgXi9MsayAXRyzo8EraFDTF/6lT6zvOtJvzLGzoXwxWpubx/vpBnRYozJAHwAYC3nfK3j4s0Q5mjh+LnZ1+Wc8y2c87MhDG+HAcgLfssHtx72K/FDX/vUkdipcpw1Auh0nE5qAerXCMfv4QDGAygPWoOHiAC+BywC8GHAGzhEBaJf6TPLXU/6lTE2FcATAC7nnPf+PXSgE9P66wTgcgDtEJJZNwFYCSHQXAVgK4CvAcQ4jo1xnN/quF7muPw5AD8B+B7AlIF+ToPh1MN+nQHgBwj5Qj8AWOi4/HYAPwNodFyeMdDPayj3KYTEV/G2vwBYMtDPaTCcAtSvuxyv1TwAVw70cxoMpwC9BzAIOUQxA/18BsspQP1Kn1l969ffHSfx2MmOy3v0mUUFSwkhhBBCguSkmTokhBBCCOlvFGgRQgghhAQJBVqEEEIIIUFCgRYhhBBCSJBQoEUIIYQQEiQUaBFCCCGEBAkFWoQQQgghQUKBFiGEEEJIkFCgRQghhBASJBRoEUIIIYQECQVahBBCCCFBouivB4qNjeVpaWn99XCEEEIIIb22a9euBs55XF/vp98CrbS0NOzcubO/Ho4QQgghpNcYY+WBuB+aOiSEEEIICZJuAy3G2ETG2DbG2BbG2EbGWDpjbDZjrJoxtslxmtwfjSWEEEIIGUr8mTqsBnAh57yNMTYHwGMA3gHwNef85qC2jhBCCCFkCOs20OKc1zidNQOwOn6/gDG2FcAeAH/jnHcGvnmEEEII6SuLxYKKigoYjcaBbsqgo9FokJqaCqVSGZT7Z5xz/w5kLBTARgA3AjgGwMI5NzLGngJg5Jw/4eE2iwEsBoDhw4dPLi8PSF4ZIYQQQnqgtLQU4eHhiImJAWNsoJszaHDO0djYiLa2NowcOdLlOsbYLs55Tl8fw69keMaYEsAnAJ7hnB/gnLdxzsWw+EMAHhvCOX+Lc57DOc+Ji+vzCklCCCGE9ILRaKQgywPGGGJiYoI60udPMrwMwAcA1nLO1zou0zkdcjaA4qC0jhBCCCEBQUGWZ8HuF39GtBYCuBjAtY4VhisBXMMY28kY2wIh0Ho6mI0khBBCyNBWUVGBefPmYdSoUcjIyMCdd94Js9mMPXv2YMOGDdJxmzZtwvbt2wewpYHVbaDFOf+ccx7GOZ/tON3BOf+HY0pwJud8Iee8pR/aSgghhJAhiHOOhQsXYv78+Th06BAOHjyI9vZ2PPDAAyd8oNVvleEJIYQQcnLauHEjNBoNbrzxRgCAXC7Hyy+/jBEjRkCpVIJzjp9//hlXXXUV3njjDcjlcnzwwQdYuXIlWlpa8OSTT8JsNiMmJgYffvghEhISMH78eGzduhU6nQ6xsbF4+eWXcd1112HRokW4/vrrkZmZiUWLFqGjowMA8Nprr+GMM87o9+dOgRYhhBByEql5+mmYCosCep/q7Cwk3n+/1+v379+PyZNda5tHREQgLS0NN954Iw4ePIjXXnsNANDZ2YmwsDAsW7YMANDc3IwdO3aAMYZ//vOfeO655/Diiy/izDPPxLZt2zBixAikp6dj69atuO6667Bjxw68/vrrkMlk+P7776HRaHDo0CFcddVVA7IVIAVahBBCCAkqzrnHpHNvlzurqKjAlVdeierqapjNZqkMw4wZM7BlyxaMGDECf/nLX/DWW2+hsrIS0dHRCAsLg16vx+233449e/ZALpfj4MGDQXlu3aFAixBCCDmJ+Bp5CpZx48bhiy++cLmstbUVx44dg1wu93nbO+64A3fffTcuvfRSbNq0CY8++igAYObMmVi1ahWOHj2Kp556CmvWrMHnn3+OGTNmAABefvllJCQkYO/evbDb7dBoNEF5bt2hTaUJIYQQElTnnHMODAYD/vOf/wAAbDYbli5dihtuuAEJCQloa2uTjg0PD3c5r9frkZKSAgB47733pMuHDRuGhoYGHDp0COnp6Zg+fTpeeOEFKdDS6/VISkqCTCbD+++/D5vN1h9P1Q0FWoQQQggJKsYY1qxZg88++wyjRo3C6NGjodFo8PTTT+Oss87CgQMHMGHCBHzyySeYO3cu1qxZgwkTJmDr1q149NFH8Yc//AEzZsxAbGysy/1OnToVo0ePBiBMJVZWVmL69OkAgFtvvRXvvfcepk2bhoMHDyI0NLTfnzfQgy14+ionJ4cPRBIaIYQQcrIrLCxEdnb2QDdj0PLUP/26BQ8hhBBCCOk5CrQIIYQQQoKEAi1CCCGEkCChQIsQQgg5CfRXTvZQE+x+oUCLEEIIOcFpNBo0NjZSsNUF5xyNjY1BrbFFBUsJIYSQE1xqaioqKipQX18/0E0ZdDQaDVJTU4N2/xRoEUIIISc4pVIpbV1D+hdNHRJCCCGEBEm3gRZjbCJjbBtjbAtjbCNjLJ0JVjLGtjLGvmKMRfdHYwkhhBBChhJ/RrSqAVzIOZ8J4AUAjwG4AICWcz4DwKcA/ha8JhJCCCGEDE3dBlqc8xrOubi7oxmAFcBsAF85LlsPYGZQWkcIIYQQMoT5naPFGAsF8BSA5wFEA2h2XNXiOO/pNosZYzsZYztppQMhhBBCTjZ+BVqMMSWATwA8wzk/AKAJQKTjah2OB10uOOdvcc5zOOc5cXFxAWguIYQQQsjQ4U8yvAzABwDWcs7XOi7eDGCO4/c5jvOEEEIIIcSJP3W0FgK4GEACY+xaAL8BuBPAJYyxrQBaAVwXvCYSQgghhAxN3QZanPPPAXzu4arbAt8cQgghhJATBxUsJYQQQggJEgq0CCGEEEKChAItQgghhJAgoUCLEEIIISRIKNAihBBCCAkSCrQIIYQQQoKEAi1CCCGEkCChQIsQQgghJEgo0CKEEEIICRIKtAghhBBCgoQCLUIIIYSQIKFAixBCCCEkSCjQIoQQQggJEgq0CCGEEEKChAItQgghhJAgoUCLEEIIISRIug20GGPfMsbqGWMPOs7PZoxVM8Y2OU6Tg99MQgghhJChR+HHMX8CcC6AVKfLvuac3xycJhFCCCGEnBi6HdHinFd4uPgCxthWxthKxlhIENpFCCGEEDLk9SZHaxeAUZzzGQBaASzzdiBjbDFjbCdjbGd9fX1v20gIIYQQMiT1ONDinLdxzo2Osx8CyPFx7Fuc8xzOeU5cXFxv20gIIYQQMiT1ONBijOmczp4NoDhwzSGEEEIIOXF0mwzPGHsbwBkA1IyxHADfMcZuAmAA0ADgpuA2kRBCCCFkaOo20OKc3+Lh4n8EoS2EEEIIIScUKlhKCCGEEBIkFGgRQgghhAQJBVqEEEIIIUFCgRYhhJCgs9TWwlJTM9DNIKTfUaBFCCEk6KofeBClf/gDrFS8mpxkKNAihBASdNa6OtjqG1C57B5wm22gm0NIv6FAixBCSNDZ9Hoo4uNhyMtDwyqqEEROHt3W0SKEEEL6ytbaiqg//hG2lhY0vP46QiZNQtj0Mwe6WYQEHY1oEUIICSq7yQTe2Qm5TofEhx+COjMTVffcM2jytawNDWj897/B7faBbgo5AVGgRQghJKhsej0AQK6LgCwkBElPPwVbczPat20b4JYJWj7/AnUrnoXx998HuinkBESBFiGEkKCyt7YCAOQ6HQBAnZ4OAINmRMtYVAQA6MjLG+CWkBMRBVqEEEKCShzRkkUIgZYsNBQyrRa2hoaBbJbEVFgIADDkFwxwS8iJiAItQgghQWXTu45oAYA8LhbW+oEPtGztHTCXl4MplTDs2gVusQx0k8gJhgItQgghQSXlaEUeD7QUsXGwDoIRLdPBYgBAxMUXgxsMMO7fP8AtIicaCrQIIYQElU3fAgCQR0RIlyniBkegZTwgTBtGX7cIANCRlz+QzSEnoG4DLcbYt4yxesbYg47zjDG2kjG2lTH2FWMsOvjNJIQQMlTZW1sBxiALD5cuU8TGDopkeGNRIeRRUVBnZ0M9KhOGfAq0SGD5M6L1JwD3OJ2/AICWcz4DwKcA/haMhhFCCDkx2Fr0kEVEgMmOf+QoYmNhb2uD3WgcwJYBpsIiaLKzwRiDNncqDLt3g5vNA9omcmLpNtDinFd0uWg2gK8cv68HMDPAbSKEEHICsbW2uiTCA4AiLhYAYG1odDvebjb3S/FQbrHAdPAg1NlZAADt1Fzwzk50Uj0tEkC9ydGKBtDs+L3FcZ4QQgjxyKbXuwdasUKgZWtwnT7kFgtKzjobLZ9+FvR2mY6Uglss0GRlAwC0U6YAAE0fkoDqTaDVBCDS8bsOx4MuN4yxxYyxnYyxnfWDYC6eEEJI/7Pp9S6J8ICQDA8Ali6fDZbaWtgaG2HcH/xRJWPhAQCAZqwQaCmioqAeM4YKl5KA6k2gtRnAHMfvcxznPeKcv8U5z+Gc58Q5/qkIIYScXOweRrTk0oiW68pDS0Wl8LOyMujtMhUWgWk0UKWlSZdpp+ai89c9sFOeFgkQf1Ydvg0hGf4GxthaAN8CsDDGtgK4BsDzQW0hIYSQIc2m10Om6zKiFR0NMOZWtNRSKaQFmyuCH2gZCwuhHj0aTC6XLgvNzQU3GmHcty/oj09ODoruDuCc3+Lh4tuC0BZCCCFDiK2tDaaiIim3yRNut3tMhmcKBeTR0W61tMSRLEt1NbjN5hIEBRLnHMaiIkRcdJHL5dqcHIAxdOTnC78T0kdUsJQQQkivNL71NspvuBG29g6vx9g7OgC7HXJdpNt1ithYr4EWLJag1tmyVlXB3toKjWPFoUgeGQn16NHo3LU7aI9NTi4UaBFCCOmVjh07AJvNZz6VtP1Ol2R4wFEdvkswZa6sBByjWMHM0zI6NpLWZGe7XacZNw7GwkJwzoP2+OTkQYEWIYSQHrO1tUn7AvoVaEXq3K7zOKJVUYmQU05x/N61jGPgGAuLAJkM6tGj3a7TZGfD1tQEax2tlid9R4EWIYSQHjPs2gU4ior6CojsPke0hEBLHDniZjOstbXQThFyo8xBHtFSpaVBFhLidp04nWgqKgza45OTBwVahAxihl270PSf9we6GX1m2L0b9a+tGuhmEC/069ah9fvvPV7XsX07mj740O1yQ14+mFIJptH4HtFqbQUAyHSeR7RgsUjBmKWmBuAcqvQMyONi+zR1aO/oQO1zz8N0pNTtOm6zwXjggMdpQwBQZwmBlji9SLxr+/FH6NetG+hmDGoUaBEyiDV/9DFqn3tuSNf0sdTUoOK229Hw2ms+k6bJwOCco3bFs2hY9Q+P1ze+8y5qn34alto6l8sN+fkImTABytQUWKp8BFotjhEtD8nwYi0tMU9LHBlTpqZAlZIq1dTqKc45qh95FE3vvouK228XEvKdNLz5Jqw1NQg76yyPt5eHhUE5fLgwvUh8alj1D9S/+veBbsagRoEWIYOYtbYWsFphLikZ6Kb0CrdYUHn3UtiahQ0k+qMIJekZc0kJbE1NMB0+7LaZMudcGNWx26Ff96V0ua21FcbCQmhzc6FMSfE5xSflaOk8J8MDkPK0xPtRpaRAmZLS69dLy6efofWrrxB+4YUwl5Wh+pFHpenJjh070LDyNURcOhcRF8/xeh+arCwYaerQJ26xwHToECxVVbCbTAPdnEGLAi1CBjFLbS2AoTuFUffKK+jcvRvR118HgAKtwahD3NfPYoGpS0BvrauHrakJYAz61WukYMWwU8jP0k7N7XbkydaqB1OrIdNo3K5TxLoGWhbHikNFQoIQaNXUgFutPXo+xsJC1D71FELPPBMpL72IuDtuR+tXX6Hl089gqatD5bJ7oEpPR9Ijj4Ax5vV+NGOzYSk/Clt7e48e/2RiOnIE3GIBOIe5vHygmzNoUaBFyCDFOYe1pgYAhuQURtvGn9D0zruIvOqPiFm8GAAFWoORIS8fzJEQ3vV1JiaD6+bPh7m0FJ179jhukwemViPktNOgTEmBvbVVysXqytM+hyJFnDh16Ai0KiqhTEoCUyigTE0BrFZY6+o83tbjY7W3o2LJEsijopD8/HNgMhli/u//EDp9OmqfegoVf/4L7B0dSH3lZchCQ33el5inZSou9vvxTzbOXwDNpWUD15BBjgItQgYpW0uLNJXjaUSrfetWHFm4sMd5T7b2dhyZvwCde/d2e6xh1y6ULrwMdoOhR49h7+xE1X33QTN2LBKWL4c8OrrbpGki6PjlFxRPnYbiSZOlU/3fg5MDw+12GAoKEH7euWBardvrTDwft+ROsJAQ6FevEdpYIORnydRqKFNSAACWqiqPj2HXt3os7QAAsrAwMLXaZURLvD/xp7kHJR7qnn0WlopKpLz0orDFDwAmkyH5uWchj4qC8cABJD78MNSjRnV7X2KivPHA0BxN7ov2LVtw5NJ5wuIEH0yFhWAqFQDAXOq+6IAIKNAiZJCyOqYN5XGxMBUVgTuW0ov069fDdKAQbd9+26P7NR06BFNREdp++qnbYzt27IDxwAGYDh3q2WOUHIZdr0fMn/8PMrUajDFHzk3w6iKdKFo3/A+wWBB5xRWIvOIKKFNT0bJ2bVCKZ5oOlcDW3IzQaadDM3q0W06SsbAIyhHDoUxIQMT556N1wwZYamthKiyCdmouAECZmgrAe4kHYZ9Dz4EWY0yopSUmwzsFWioxgKv0HMC5PU5rK/Tr1iPyD5dDO3myy3WK6GgM/+fbSFrxDCIXzPfr/hTx8ZBHR5+UeVrtmzbBdPAgKu9eKkwNemEsLII6OwuK+HiYy8r6r4FDDAVahAxS4rfJsFmzYO/ogOXYMek6zjkM+QUAgJY1q3t2v458Gn/yvsRjTT38tmouE45Xp6dLlylTfSdNE4EhPx/a3FwkLL8XCcvvReSVV8BaVR2U0UBDXh4AQJubC83YbJgKXQN6Y2EhNFnCyI5u4UKhZMIzKwDOETp1KgBAmZIMwPu0sDB16DnQAhzV4RvqYTebYa2rk+5PkZwMMOb3827d8D9wkwmRl13m8Xr1qFGInD/fr/sChCBQk5UF0xCctu8r44FCyHQ6dO7ejbpXXvF4jLhXpCYrG6qRI2lEywcKtAgZpKyO5fThs2cDcM2fsRw9CmtNDVRpaejcuatHiajiB5c/HyDisT3NvzCXlgIyGZTDh0uXqVJS/B6dOFlZamthLi+H1hHEAJACGjEoCiRDQT6UKSlQpaZAnZUlBPSOkSlbezssR49KxTu1U3KgTElB2zffgGk00IwfD0DYG1Cm1XoNoj1tKO1MERcLW0OD9FpTOUbIZCoVFPHxfgda+jVroB6VCY2jqnwgaMZmw3TokM9RnRMNt9lgPHgQuksvReRVf0TTO++ibeNGt+Mslcf3ilSNTIOprIy2LPKCAi1Cesne2em2fUggWWtrAJkMoaefDsjlLiNQ4kqxxEcfAWQytKxZ4/f9ih9c1ro6WBsb/TrW27SAtxwOc1kZlKmpkDnyNwAh58au18PW1uZ3W4cyW3uHVNrAXwbH3zXUMS0HAKqMDMhjYtAR4ECL2+0w5BdIQZ0meyyA4wG9mAQu5ioxmQy6BQsAANpJE6W/rTQt7GXloa9keECopWWtb5CCcHHqUPzdn214TIcPo3PvXugWLPS5krCn1FnZQgmDI0f8Ot5uNqNz3z507tkjnPbtC3iQxjmHtakpoPfpzHz0KLjBAE1WFhKWL4dm7FhULb8P5i5/X3GhhCY7G6q0NOF/u6UlaO3yhpvNsPi5YMKm1/u9irTjl1/60iwXFGgR0gvcbMbRG25E2VVXB+1bnKWmForYWMhCQ6FOT3fJFTHk5UMeFwvt1KkIPfNM6Nd+CW6z+Xe/lZWAQgHA92pGbrVKgZSnaYHOvXtRMvssGHb/6nadqbQMqpFpLpdJSdMnyfRh9YMP4tji/+vRbTry8iCLiIB6zBjpMsYYtLlTYMgvCOhrzXTwIGx6PbS5UwAA6tGjHAH9AQDHk8DVWcerp+vmzwcUCoSecYbLfSlTUz3+XbnZDG4weE2GB4Tq8LaWFimYdwu0/Hi96NesAeRy6C6d2+2xPSGO5vmbEF//yqsou+JKlP3xKuF0xZU49ue/+P2/2R3OOaruvReHzz2v2y9JvWWSNtvOgkytRsqrrwB2O+qefdblOOOBQmmvSPXIkQAGJiG+4c23cOSiOd1+qeGc4+iNN6Hittu7vU/Dzp04evMtgWoiBVqE9Ebdiy+hc+9eWI4dg+Xo0aA8hrW2FoqEBACQ8mcAR35WXh5Cc6eCMYbIhQtgralBxy87/Lpfc2UFQnOFERNfe7lZamoBmw1ynQ7m8nK3ZHzDr0KA1fmra6DF7XaYy8qgTktzuVyZ4kiaPkkCLeP+/ejct69H3/IN+QXQTpkCJpe7XB46dSqsNTUBfa2JU5Hi1KRMrYY6PV16nRmLCiGPiYEiPk66jSo1Benr1yHquutc7ksMiLoGgr623xGJtbQ69+4FlEoo4uOd7jcZltpan7W0uNWKli+/RNjMmcKWPgGkSksD02j82vOQm83Qr1mD0DNOx7C338Kwt99C7F/vQMe2bWh4882AtKfl08/Qum497AYD9OvWB+Q+uzIWFgFKJdSZmQAA1bBhiLziCrT99JPLSJqxqAiqkSMhCwmBagADrfaft8Le0YHW//3P53HG3/fDeOAADHl5PlMtrI2NqLx7qTSFHQh9CrQYY52MsU2O058C1ShCBrPW779H03vvIWzWLAAI+JSOyFJbA2WiEGips7KlqT5zWRms9fXQOoKlsLPPhkynE77Vd4Pb7bBUVUMzbiwUyUk+v6mLAVHomWeAm0ywVFW7XC9+8+2aVG+trQXv7JTefEXK1JNnRMtuNgvPk3N0FBT4dRtLdTUsR48i1DHC5Ez8W0vFRQOgI78AyuHDoUxKki5TZ2dJf08hET7LbSpOPXKky5Qw4JgWbm+X9iwUSVXhu0mGB4RAS5mU5BJkqlJTAZvNZ5mB9p9/hq2+AbqFC3w93V5hcjnUY0b7VceufcsW2JqbEbVoEcJmzEDYjBmI/ctfEHHpXDSsfK3PU1HGAweEQqzTp0Mzfjz0q1cHZTTdWFgIdUaGVLYBgLBS02pF6/r1LsdpHLXGlCkpgFLZ74GWrb0Dxt/3AwBaVvt+/9OvWSM8Jx+pFtxmQ9U998Cm1wsjeQHS1xGtSs75bMfpnYC0iJBBzHzsGKrvfwCa8eORsvLvkMfFSqv/As1aUwtFQiIAp5o+hUUw5Lnm8cjUauguvhhtP/zgtWikdJ/19YDFAmVKCjTZY2Es8v4BcjzQmg7APU/L6DTy4Uw8TpXmGmjJIyPBtNoe1UUaqixHjwKOEUB/Xx9iwO6cCC9SjRwpvNbyAhNocZsNhoICadpQpHEE9JbaWpgPlUAz1vOmy12JKwW7JsTb9MLrsbtkeEDoM/F+jt+vIzj3UXlev2Yt5FFRCHd88Qk0TXY2jEVF3QY1LavXQB4Xi7AZM6TLGGNIeuQRqNLTUbnsHr9zibqytbWh4q67hEKszz2LyMsWwnToEIz7D/Tq/nwxFhW5bbatHjUKmvHj0eLYHcDa3AxrdbX0+mByOVTDh8PUzyUeOnfvAmw2hM2aBeO+fW47G4jsJhP0X3+N8PPPR+h076kWDW+8gY7tvyDhwQekIDIQ+hpoJTLGNjPGVjPG0gLRIEK8sbW1Qb/+qwF7fLvJhMo7lwCMIeXllyFTqRA6JReGvDy3N2FLXR1aN2zo9WPZ2jtgb2+HIkGYRtFkCTk7xsIDMOTnQREfD+WIEdLxuoULwU0m1Dz6GOpXrUL9qlVo/Pe/3RJxxeBJmZIKTVYWzKWlXouRWiorAcYQesbpAFynBewmE0yHD4Op1TAfKYW9s1O6TiwF0XVEizEGVUrygKw8tBuN0K//ym0vv2AR+0AeE+P3akFDfgHkOh3Uo0e7XccY8/paE3HOoV+3zq+pSlNxMeytrdK0oUj84Gz96mtwi0Wqjt4dcZql62ilTS+0xdM+hyLn6T7n/Czn895GQa3NzWjfuBG6S+e6jMAEkiYrG/bWVtS/+KL0v9WxfbtrOxoa0L55M3SXXgrmyH8UyUJDkfrqK7AbDKhausyvfC3jwYPSY9WvWoWKO/4qFGJ9+SUooqMRMWcOmFoN/WrfpV069+xxuZ/Gd971uRjFUlcHW0ODlJvmLHLhApiKi4W6eo4vaM6vD9XItB6tTra1t0P/9dduKQk90ZGXByiVSHz4IUCh8Dqq1b5xI+x6PXQL5iNygedUi45ffkHDa6sQcelcRF5+ea/b5Imi+0N8SuOcNzDGLgDwDoBznK9kjC0GsBgAhjst8yakN1o+/Qx1zz8PzdhsqDMy+v3x6559FsYDB5D6j1VQOabBtFOnonXDBiEnySmwqH/5Fcdy81F+VaHuylonFCtVJgojWvLISCiTk2EqLERHfgFCTz/dZUpHM24stDk5bsGdOiMTYTOmS+fFFVzKlBRwswngHKaDBxEyYYJbGywVFVAkJECRmAhZWJhLoGU6VALYbAi/6CK0fvUVTIcOIeTUUwEIpSBkWq1Lbo9ImeI5aTrYmt5/H/UvvgTj/v1IWH5v0B9P/MCJXLgQjW+/DWtTk1Sp3BtDXh60uVPAZJ6//3p7rYk6d+9G1d/uRezttyPu9tt8PlbbDz8CjEGb2yXQcnxwirXZuo5seONt5Mne2v2IljwmRvq9a16MMjERkMm8vmY6tm8Ht1gQccklfrWzN7S5uWAaDRr/6TRpI5djxPv/gXbSJAAQvgDabIhcuNDjfagzM5Fw/32oeehhdGzbhrCZM30+Zt3zL6Bj69bjFygUSFi+XHo8eUQEws89F/qvv0b8vX+DTK12uw9TSQnKb7wJ3OlLEAB05Odh2Ouve3ydiQGUp797xJw5qH1mBfSr10h/b+fj1CNHon3zFnCr1S3Y9KThH6+j6d13YTlWgdg/92zRiMiQl4+Q006FMiUFYbNmQb9uHeLvvsvt8VtWr4EiKQmh06aBW61SqkXY9DMBoEd7YPZGn0a0OOcNjp/fAhjh4fq3OOc5nPOcuDj3N11CesJ4wHU1VH9q3bABzf/9CNE33YTws8+WLhenXpyndOwdHWh1VGvvLm/AG3GPQzEZHgDU2dlo37wFtoYGtykfxhiGv/8fZB3Yj6wD+zF6h5AP0jV/ShrRSk6SPlS9FS61VFZCmZoijESNHCkVIRVuI/wtIh15Mc5/E3NpqZBE7OHNyt9VZIHEORe2jlEq0fTvf6P1+++D/pjm0lJhGunsswAAhoKdvo+vqISlshLaKblej/H0WnPW4hjd6G4Ejdvt0K9di9AzzoAyId7lOnlkJBTJSTCXHAYLCYFqhNvbukeyiAjIwsI8jGg5crR8BFoylUq6vuuIFlOpoEhI8LqjgKmwEFAqoXFapRlo6vSRGLN71/H/rbwdUKakoPKuu2FtanK8vlZDc9qpPr8ARs6bB3lUVLfvCdxigWHXLkRe9UfpMbP27UX0omtdjtMtXAC7Xo92DzWu7AYDKu5cAplWi8zNm6T7SXjwQXRs3oLGdzxn+ojpAJ5GMuU6HcLPPRetX32Fzr17hS9hTl8eVGkjAYvFr/9vbrFAv24doFSi/u9/R0cvpsRtbW0wHjggLeyJXLgAtoYGtDsHqBBq03Vs2wbd/HlgcrlbqgW3WlG1dBnsBgNSX32l2z0we6PXgRZjLIwxJnf8fiqA4BUUIgSQ8on6e0sMU2kpqh98CCETJyL+riUu16nS0qCIj4ch//iHW+s334IbDFCOGA79unW9qqNjcRQrVToFWhpHQUkAblM+gBBsMZkMTCYTRsBSUtxWS5krKyGPi4VMo4EiORkync5roq+5qlLaBkUsSCgyFRZBFhoK7bRpkIWHu/xNzGVlbtOGImVKCuxtbT2uL9UXnXv2wFxaisT774Nm/HhU3/8AzE5V9oNBWHU5EiGnnAKm1XYb/Ij1szzlZ4k8vdZEdoMBbf/7BpDL0bl3L+wmk/fHysuDparKa/K4WAleM3q02+pHbxhjHks82FqEv7MsPNzn7cXRz66BlnBZstdiqMbCIqgzM4M2bSgS/6+YTAa5ToeUl1+CrakJVX+7F8bffoPp0CFELvA8miXdh0qFiLmXoP3HH31O7xr37wc3GBA6dZrL43YVOm0aFElJboEb5xw1jz0G85EjSHnheSgTEqT7iLrmaoRfeCHqX3kVhp3uwb+xsBDK1FTIvfy9dAsXwqbXo+37791ymMRyLv5sxdO+9WfYGhqQ/PRTUA0fjsplS3tck9Cwcydgt0ujsmEzZ0IeEyPtxynSr/0SsNsRueD4611MtWjdsAH1K1+DoaAAiY88LK20DLS+jGiNBbCTMbYFwEoAvRv7I8QP9s5OaerK5MfWMQF7XKMRlXcuAVOpkPLSi2BKpcv1Qo2jXHQ41ThqWbMaqrQ0JNx7L2yNjW7fsPxhrXUf0RLzZxRJSVAOG9btfQgryFyDKEtFJVSOMgviFiOeRrS4xQJrTe3xfefS0mCtqpZysYxFRVBnZYHJZC7blNhNJlgqK70HWgOw8lC/eg1YSAgi5l6KlJdfAhhD5ZK7YA9ivpa5tBSqkSPBlEpoJ02CocD3N3ZDfj7kUVFQj/L+Rs8Yg3bqVJfXmqj12+9gNxgQc9ON4GYzOn/d4/V+WlavgSw8HOHnnOPxenE6SO1nIrzI02ilrbUVsoiIbgM2uSNPy1Og5W1HAc65sPLNz+nNQAoZNw4JD9yPjp9/RsVf7wRTqxEx56Jubxe5cKEwmvPV116PEUd3uo5ad8XkcujmXYqObdtgceyLCgD6L76A/st1iL39NqHYsfNtGEPSk09AmZqCyruXutXiMnXTn6GnT4MiMRGw291eH+L/vD/bdenXrIY8JgYRF16IlFdfhb21DZXL7ulRvTFDfgGYUomQCacJz02phG7uXLRt2gRrczMASKON2pwcqJzSlzTjxkI9ejQa/vE6Gt98E7rLL+vR9kw91etAi3OezzmfyDmfyTmfxTnfG8iGnai4xYKKO5eg7OprpFPVAw8Myq0LbO3tqHrgARiLD/bodpxz1L3yClq//S5gbTEdPAjY7ZDHxsJY2P0KoECpe+55mA4eRPJzz7osg3emnZoLW0MDzEeOwFxejs6du6BbsED4hhUbK03piIwHD6JiyV0+KxRbamqErU00Guky8RtkaO4Uv3IINFnZMJeVSaNggOumvYDwoWo6eNCtTpGlpgaw26XaV1JBQkc9LVNRkdQedXYWjAcPgttsQn0azt2KlYrExw7EnofcakX1Y4/B4KN8gr2zE60bNiDi/PMhDwuFKjUVySuegXH/fpQuWCj9Dx696U8wOiqh95W1uRm2lhbpg0ebmwvToRKXD7W2H35A2bXXSo/f9t13Qv0sL/lZIm3uFNgaGty+bOhXr4ZyxHDE3HILIJNJI2Rd2dra0Pbdd4i4eI7La8uZmAityeppoCWMPDn/b3ZXFV6kiI0DUyqlUg+u95sKa02N20IGa109bE1NAV0d1hORV16JiIsvhrWmBuHnnuvX89RkZUE9NttnErshLw/qUaO6zekDIIzS2O1C8WTHa6nm8ScQesYZiP3znz3eRh4WhtRXX4WtpQVV9xwPbmztHTCXl0PtIRFeJAR38xzPxfX1oYiKEmrudZMQb21qQttPm6CbOxdMqYRmzGgkPvwQDDt2oPHtf3q8jf7rr1G/8jWX15YhLw8hEya4vI51CxYAFgvKr10k9MeVf4S5vFza0UB6HoxBt2ABrHV1UI8Zg8QHH/TZ5r6igqX9zFhUjLZvv4Xd2AmmVsHe3g79F6uDVvSyL/Rffgn9F6tRcccdPdo2pem999D4xpuoXbEiYBWRxZEZ3aWXwtbcDKvTN7hgsen1aPn8c0T+4Q8+k1fFHAFDfj5a1q4FZDIhH0ChgO7SS9G+abP0IWtrb0flHX9F2zffoOPnn73ep7W2zmU0CxA22Y2+4QZEXXONX+3XjM0GOIfxoBAoc5sNlurqLoFWFrjJ5Fb/5vjqRHHq8HhBQsvRo7AbDNIImyZ7LHhnJ8zl5dKbrKpLsVKRqptVZD3RvmUrWj76WFiRVV3t8Zi277+HvaMDOqck5fCzz0bCQw9CER8HplaBqVUwFhai4o6/BmR7oON9IOQ3iWU4xODHWHwQlcvugbW2Tnr8kAkT/Pq7hp91FuQ6HaoeeFCaHjQfOwZDQQEiFyyAPCICmrFj0eFhehFw2njZS9I2AGinnQ7dwoUIP+dsr8d4okpJATcYXKbFbK16n/lZosgF8xF7220eA0316NHC6/iAaymD41vADEygxRhD4mOPIerqqxB7261+3y5ywUIYDxzwGNhzsxmGX3+V6qZ1RzViBGIWL4YiMUF6LYWfew6Sn3/O5yiiJisLCQ89iI7tv6DhjTcAAKaDrlsueRN1zdXQLVggrUZ2ac/Ikd1OHbauXw9YrS5T17qFCxE2axaa3n/fLdWCW62oXbECDatWofmjjwAI783GwkK3qXbNmNGIvuEG6X9bFqpF+IUXIuKiC93aEXnZQkRe9Uek/v1Vr186AqWvqw5JD4m5LKmvvCLUHTlyBEfmXIyOvDy/E0/7i371GkciaiWqH3gQKa++0u1IiuHXX1H3wovSNELHjh0IO/PMPrfFWFgIWUQEws85G03vvivkEjhW5AVL64YN4GYzIq+80udxyuHDoUhMRMcvO9D522+OJGMhSIpcMB9N774L/fr1iL7+elQ/+BDMFRVgKhU68vIQcaH7GwAgFCtVJLoGWoyxHq2Yc052106cCGtdHWC1StN3gJBgDzimAp1WR0qBluNYcdjd+U1UTJh13qZEvF3XqvAimU4HWWioz7pI/tKvWQ25TgduNqPy7qUY8Z/33KZ2W1avgTI1FdopOS6XR19zDaKdAhvD7t0oX3Sd369zX8Q+EkcBNWPHQqbVoiM/H6EzZqJyyRLIwsOQ9t8PPY7g+KKIjUXSsytQ8ee/oPbpZ5D02KNCoVrGpJEG7dRcNP/nfdg7OyELCXG5vX7NGqgyM6QNoT2Rh4Ui+emnetQuQNiGBxCmpxVRUQAAe4t/gVboGWe4besjEqfQOvLyXVbH+krc7i/ysFAkPvxwj24TccnFqH3uOehXr4HmvuUu13X+/jt4Zye0U/0LtAAg/u67evT4osjLL4ehoAANr62CdtIkaT/H7gItZXw8kp952uN1qrQ0t9IXXbWsWQvNKadA41TGhDGGyCuvQPvmzWjfutVlwZFYkFaZkoK6Z1YgZPypsNbXAZx7nF719z1SHhGBpEce8evYvqIRrX5mKiyCLCxMelOSChEGqehlbxmLD8K4fz9i/nQT4u++C23ffYfm9z/weRtrczMq714KZWIi0j7+CLKICOjXrA1Me4qEKsTqMVkAY15XygVSy5q1UI8eDc24sT6PY4whdGou2n74AdbqamklHnC80J9+9Ro0//e/aPvmG8TdeSe006b6/Jtba2qhTOhbIKlISoJcp5Pyp5xLO0jtGzkSTKVyy+UyV1QAMpkUMMq0WiiSkmAqLRWOVSikwEydng6mVMJUVAhzaSkUCQleV+54S5ruKWn6YcECJD35BDp//RV1L7/icoylshKGHTugWzC/+ym5SZP8fp13x1xaCiiV0v84UyoRkjMZhrx81DzyCMzl5Uh54cUeB1mi8NmzEXPLzWj55BPo161Di7iC0DG1HTp1KrjFgs49e1xuZzpyBJ179iAywBsvi47XvDq+QtCm10Pmo4aWPxTR0VCPGuU2HWosLIRy2DCviduDlSIqCuFnnQX9+vVuozfSoogpvvOzAqFrMdWOLVuFVaddRtJ7QjVyJKx1dbC1d3i8XqzB5WkhRtiMGZDHxLilWuhXr4E8OhppH38EeWwsKu+6C23f/wCmViPktNN63db+RIFWPzMWFkKdNUZ64/enEOFA0K8RlsNHzJ2L6BtvRNhZZ6H2+efRuW+fx+O53Y6q5ctha2hAyssvQxEXB90lF6Pt++/dqpVzznv0XLnNBlPxQWiys4Q8m+HDpeAhEDy1xVRSAuO+fdAtXODXh5I2Nxew2yGLiEBYlyTjyIULYDp4ELVPP4PQWTMRc/OfEDp1KsyHDwuV2ruwm82wNTVJxUp7izEGdXa2FJSKeVEqp0CLKZVQjx4tlWsQWSoroUxMdBkhUjsKEopbdIjbsDCVCqpRmTAeKJSSwH3paYkHT3+f1q++kqYfIubMQdTVV6Hp3XfR+t13sHd2wt7ZiZYvVgOM+Z3k6s/r3B/mslKohg1zqeUTmpsL85EjaP36a8T99Q5pOrG34u68EyE5k1F13/2wVlW7fHCFTJoMyOVu2/UEa+NlkafiorbWVr9GtLqjzc2FYfdulzwtY9HAJMIHgm7hAtiamtC+ebPL5R15eVCPGSONCAabczHV9s2boRmb3acgvLuVhy2rhW1wdBdf7HYdUyrdUi2szc1o++kn6ObOhSIuDikvvQhLTQ30a9YI+Vke6ocNRhRo9SNut8NYXAxNtusIiXbqVFjr6/1aFtsfuMUC/fr1CJ89G4qoKDCZDMnPPA1lXBwql9zlcWly4z/fQcfmLYi/bzlCxp8CANAtEJfQHt/sk9tsqLj9DpRfu8jnEnRn5rIycKMRakfypdqxJUYgcM5Reuk81DzpOlXSsnoN4Mix8oeYK6C75GK3f/6IOXOEekDx8UhesQJMJvO5d53VsU1HIKZGnZPdxUrviuTkLsdkwbj/gMu3a0tlldsKMFXaSJhLS6XRRZf7yBICOlNZmZSb5I0yJQWWigq/gu2OvHwcOnM6Wr9zXVjRsnqNy/RD/PLl0Iwbh8q/3oniiZNQPHESGv7xD2inTfW4ks0Tf17n/jCXlbnlqGmnTgMAhE6fjpjFi3t1v86YQoGUF1+EXKcTptTPPVe6Th4WCs0p41zqbVmbmtDyxWph4+Ug1TSUh4dDrtPBsGu39GXKptdDrovs831rp+aCd3ai07Gvna29HZbyowOWn9VXYdOnQxEXh8Z3/yXlsdrNZnTu/rVH04aBoM7MRNKjwhSauo+Bqzo9HQBgyHPf4N5SWwf9unUIP/ccr8F35MIFgNUKvWNPxdb1XwEWi/RFQjtxIuKXLRV+7+d+6gsKtPqRubwc3GBw+5DqrhBhf2vfsgW2xkaXlRryyEikvPIyLPX1qLrvftfVHwUFqH/lFUTMuQhRV10lXa45ZRzUo0ZJVaYBYS+p9h9/ROeuXah79lm/2iNOax1Pvs6G5dixwCQuHzkC06FDaP7gA+mfWyymFzZ7ll8rfwChonXqaysRe8cdbtfJdToM//e/MOL9/0jfVDXZ2ZCFhXmcPjxerDQQgVYWuNksJLFXVkERH++2IXDYWWfB3tqK9q3Hk/MtFRUeAq002NvbYatvcNsDT5OdDVtzM+x6vceq5c6UKcmwd0ma9sRaX4/KZUtha2pC9X33Cysa4Xn6QaZSYdibbyD+3nsRv2ypdOpp/oyv17k/hJWXR91WXWpOGYfkF14QSoR0M43pL2VCAkZ8+AGGv/NPt+A+NDcXnb/9BrvBIIw23/M32NvbEfdX99dnIEVdfx3aN25Ey+efw95hAGw2v1bjdUecShNriJkcieR9DQwGClMoEHf33ejcvRsNq1YBAIz79oGbTNLimv6kmzcPKSv/jpgbbujT/agyMhA6fTrqX/27y+IFoSjoUnCLBbG3el844JxqwTlHy5o10Iwd61KQNvr665Hy0osuOZaDHQVa/ej49gZdCr1JhQgHR6DVsnoN5LGxCJs5w+XykFNPRcI996D9p5/Q9O6/AADWxkZU3r0UqmHDkPj44y7Dzowx6BYuhHHvPpgOH5b2ktLNuxTRN92E5v9+BP3X3uvJiIyFB4QpLse3JbH/TAEY1RL7XD1qFKofeRSmw4elYnq+VmZ5En7uuV6H/LWTJrlsL8IUCmgnT/ZYyFKsidO1andvqJ0S4j0FT8Dx3Ai9IyC2m82w1tVJOUYi5ylBdVbXQCvL43GeHN8Xz/ueh9xmQ+Wye2Bva8ewN98AUyhQseQu2I1Gr9MPithYxNx4A2Juvlk6dRf0eRJy6qlI+NvfXF7n/rJUVYGbzW6PyxiD7pKLAxJ0OFOPHIkQD4nt2typgMUCw6+/ovHNN9GxbRsS7r8/6FNtsf/3fwg943TUPvGkNKohj+z71KEiKgrqMWOkjbelL19DNNAChIUyugUL0PD6G2j/eZvw3BiDNien+xsHQcR55/V5tJMxhuTnn4M8KkooYeP4Mly/8jUYdu5E0qOPdFsUVEy10H/xBUyFhS4rhsXHiJgzJyBT0v2FAq1+ZDwgbBfR9YV2vBBh/oDnaVkbG71ujgoAUYuuRfj556PupZdgKChA1T33wNbaipRXX4E8LMzteN2lcwGFAo1vvSXsJZWRjsRHHkH8XUsQMnEiah56GKYjvgvcmQqFFXFivpD45hqIhPiOvHwokpIw7J9vQ6bRoHLJEjR/9BHkMTEImzGj+zvoA+3UqTCXlUlV4EXWGiHQUgRg6lCdni4lu3etoSWSCv39tAnWpiZYq6sBzt1HtJyCh65fFlw3l+0+RwvwXeKhYdUqGPLykPjwwwibNQtJz66AqbAQNY8/gdb1631OPwRC1LXXIPyCC4TX+e7dft/O7GVD7f6mnTRR+L97+5+oX/kaIi65BJFXXhH0x2VyOZKff14oQXGvsKJOFqDgUpubi85f98BuNsNYeADy6Ggo4vv+ZWQgJT78ENSZmai65x60ff8D1FlZkEdGDnSz+kQRFYWUl1+SVqu3b96MxjffROQfLpdWxvoiplrUPPGk8N50iXs+11BDgVaAWCorYW1q8nmMsagI6owMj9tFiIUIu9Yz6q3OvXvR9sMP0snfoES/TqhxErlgvsfrGWNIeupJKFNScPSmP6Fj+y9IfOhBr0UDFTExCJs5E/ov1wl7Sb3yCmRaLZhSiZSXXwJTqVC5ZIlLW00lJdLtxerPzkX0FHFxUuHSvuCcw5Cfj9DcKVAmJCD5uedgKjmMjq1bpWJ6waTNda2vJLLU1oBptZB5CFx7iikUQrL7b7/BUlMDZUqyx+N0jtyI1q++cqqh5XqsMikRTKWCMiXFbWRGHhYG5fDhYEollMmeH0O6H0eg1b51i8vfXTw1ffAhGl5/A7qFC6UVnOJKO/3q1bDp9W4FCANNqqDttKedP8Q8S291xPqLLDQUIaecAsOOHVClpSHpsUeDstLQE0VMDFJeelHaRSBQAXHo1FxwoxHGfftgKhQK5vbXcwoWWUgIUl59BXaTCaaiogGZNgwGYRXv3Wj77jtU3H4H1GPGIOGBB/y6rbCn4jngJhPCzjlnyAeeANXRCghzRQVKFyyEPDISI1d/4XW5sbGw0Osoibh3nSEvT5oi63V7jh1D2R+vApxHxxjDsLfflnYr98Ta2Iimd98VNkd1qqnUlTw8HKmvvIyyq6+B7uKLobvsMp/tibrqj2jfvBlJjz3qMpqnTExE8vPP4dj//RkVtzvljiiVSPvwA4SceqqwVLi52W0BgcZpNV1vmUtKYGtqOr5X1vQzEXvbbWh86y1EXu77OQWCJjsLsogIGPLzoJt7iXS5tbZO2J8sQB8imuxsYcm0zeYyfelyzOjR0JxyClpWr0HU1UKeXddjmVwOzSmnQDXM831oc3JgPny4++1WIiKgSEiA/vMvoP/8C4/HqMeMQeJDrtWa4+68E5179sJaV+e15lIgSa/zP16Fqr/di2FvvdltfpWptBSyiAjI/cztC6bQmTNgLC5GyisvB2WjXF+0U6Yg/q4lQk29bgJvv+8zJwdgDB3bt8N06BCirlsUkPsdaOr0dCQ9/jiqli1DaJBH0ftT9E03wrB7Nwx5ecJrsAdFQSOvuBKtG/6HqCv+EMQW9h8KtPrIbjajcsldgN0OS3W114KH1vp62BoavK6SUQ4bJhS9zMt3SSjvDf0aYVPN4f/+N+S6CHC7HdXL70PVPfdg5No1LhsVi7jNJk0DDvvn290+hmbsWIza9BNkOl23AUHYjBkY/ct2j/kpYTNmIHPjj7CJe1NZrahcchcql9yFkau/kIKprv2mycpC444d4GZzrzeUlfYUc1q9Enf7bYi+blHAc2k8YXI5tDk5bisPrTXuxUr7Qp2dBThWNvlagadbuAC1jz+Bth9+ABQKj9Myw956C0zhOZBKfPghcKt/OwGMXLPaZ3V/VXq6W4I3Uygw/N//gr3T6Pdmx32lGTsWCQ88gJpHHkHjW2953dZEZC4tg2pk2qAYaYldvBhRV13Vb6UCuoq5+Wbo5s+HwrGPYV/JIyOhzspCy2efg1ssbl++hjLdJRcjdGpu0FaEDgTGGFJX/h329vYev5+GTpuKUVu3nDD9QVOHfVT37HMw/v47kp9dgfi7vBc8PB4weE7eFIteGvqYp8XtdqmAYei0qdBkZyNk3DhpeLry7qVuRfIAoOH1N45PAzqt8PBFHhnp9weKr380ZWIiNNnZQlvHjz++6mv5fdLKFXWXNmmyswCLxWWasacM+flQJie7jdz0R5Al0uZOgaX8qLC3oIOlthbK+MAFWs57kvkMtC6+GEypRMeWrUINLQ85evKwUK/fTGUaDeRh/o2cKKKjpb+5p5O3+jhMLvf7MQIl8oo/IOKSS1D/95Xo2OF5axuRubQU6rSBzc8SMYViwIIsUaCCLFFo7hSp9txQLe3gzYkSVDhjMlmv309PpP6gQKsPWv/3PzR/+CGib7gB4eeei+ibvBc89Ge7CG3uVNiammDuS/CQl+dWwBBwDE8/9hg6d+1C/auvulzXsX07Glatgm7evG6nAftDyPjxwqqvTZvQ9O6/oBwx3C3RXto6ppd5WtxuhyE/322vrP7mPGUMCCOL1vr6gCTCizRjRgOMCZXefdyvXKdD2LlCsdWuKw5PZowxJD32KFRpaahctsxjkVkAsHd0wFpb63VDbdJ34v8r02gGPA+OEH8N+NRhy+o1UGek97iUfudvv8F08CAi+xgYtG/bBntHByLOP9/ncZxzNH/wIUxHDosXoHX9Vwg57TTEL70bgGNp64pnULrwMmnqS0zkMxYWQpma6nO7CHEKq/aZZ6D0Y99DmVaLmD/9yaXWU8vqNW4FDEW6uZfAsHMnGv/5DqyNTWAaYdSg7dvvHKsBHx4UUx6AsOrLsHMn2r79FqEe9kpUjRgBptXCuH8/cJnvMgzcYkHT+x8g/PzzoXLs3Wc6VAJbS4vfm7cGi3rMGMh0OjT+698w7NkDbjIDNhuUAZw6lIWGQjViBOwmU7fTrJELF6Ltf994TZo/WclCQ5Hyyssou+JKHF38fwiZ4P5+ZW8VlrKrBsmI1olIzNNSjxndb9PHhPTVgAZa+q++RvX990Om0yF99Rd+V3C2VFfj2M23wKbXC/V05vZuSwljYSEq/nIruNUK+bvvInSa99GN5v/+F7VPPSWsoHH8gyuHDRNWzjmtTpPrdMIb8tXXoGr5fUj9xyowmQymwu63i1ClpiJ0+nRhZ/ci953du7Lp9TAVFmLY22+DyeWwtbWh7bvvoFu4wOvUS8L998FSU+2y9YM8KkpaDThYiKu+bE1NCD//PPfrZTKEnn46WlavRuQfr3TZoLSr+ldfReM/34F+7VqkffIxZCEh0ghSqIdNSfsTk8kQedll0K9di7ZvherniqQkl81zA0E3fx5s+tZujws94wyETp8e9NIWQ5Fm9GgkP/0Uap99TvpbdaUcNgwhEyf0b8NOIvKICOgWLPC6ypmQwYj1V92mnJwcvnPnTum86cgRlF7+B6hHjoS5vByq9HSkffB+t9+4udmM8kXXwVRSAlV6OkyHD2PkZ59CnZHRo/bY2ttRetll4J1GyEJDYWtrQ/qa1R7nhTt/+w1lV1+DsDPPlAKn7jR98CFqn3wS8fcsQ+SVf8TBnBzE/vUOxPmoittTLZ9/juoHH0Ls7bcj7vbb0PzJp6h55BGkffapxyKGJxpLXR1KF14GeUQERn72qceVVW0bf0LFrbdCO3UqDPn50C1cgOSnnsKx22+HqagYmT98PwAtJ4QQMtgxxnZxzvtcQbZPOVqMsRsYY9sZY9sYY5P8vZ29sxOVdy6BTK1G6qrXkPTUUzDu24faF17o9rZ1L72Mzr17kfTkE0h97TWpyKTdYPC73ZxzVD/4ECwVlUh5+SUhUby9HZVLl0n7Tolsej0ql9wFRVwsklc84/f2GVHXXI3wCy9E3Usvo+XjjwAEvoqx7rLLoJs3Dw2rVqFj+3boV6+GelQmNKecEtDHGayU8fFIeeF5mEtLUf3oY26LCMwVlai67z6ox2Zj2FtvIub/FkP/xWq0fLEahoKdQ2qvLEIIIUNTrwMtxlgUgL8CmA3gWgB/9/e2NU88CVNJCZKfexbKxEREXHA+ohYtQvN/3kerlyF5AEIxw3//G1FXX42Iiy6CMiEeyc8LRSZrHnvc79V6zR/+F23ffIP4u5ZAO3kyNKNHI/Hhh2HIz0f9a69Jx3HOUXX/A7DU1SH15Zd7VDiNMYakJx6HMjUFdS+8CCDwgRZjDImPPAxVRjoqltyFzr17oVuwhDwrHgAABvBJREFUcNDkWfWH0GnTEHvH7Whdvx4tn30mXc7NZlTefTdgswnTomo14m6/HdrcXFQ//DDser2UiE4IIYQES6+nDhljFwK4iHN+p+P8HgBTOecmT8ePj9DxNdOmCfWmKioQ85c/I/7OO6XrudmMsmsXwVRcDIWHOk8AYK2thTozEyM++q/Lxrj1K19Dw6pVQo6XHwmSlqoqhE2f7jYNWHX/A9CvWQPlsGFCm6wWWKuqkXD/fYi+7rpu79cTY2Ehyq78I2ShoRi1fVtQgiBTSQlK/3AFuNmMUZt+OqGWxfqD2+04dstidOTnQ5mUJFxmNMJaV4eUV19FxAXHFzqI0422hgZkbvrJ5yo8QgghJ69ATR32JdC6GsBozvmjjvObAfyRc17tdMxiAIsBYLQucvLGW24BAKiGpSL2ttvcVo1YqqvR8Pob0tYNXck0GsT+5c9ulYa5zYaGf7wO89GjfrVdrtMh7vbb3Eao7J2dqP/7SlgbGqTL1KNHIebmm/sUILVt/Am2lhZpO5Fg6NixA5aq6qA+xmBmbW5Gw8rXpE1MAUA7JQdRV7jv79a5bx86duQhdvEt/dlEQgghQ8hgCLQuBHAh53yJ4/we+BjR6poMTwghhBAyWA2GZPg8ANMZY0rG2HAA7d6CLEIIIYSQk1Gv62hxzpsZY/8AsBkAB3BnNzchhBBCCDmp9KlgKef8XQDvBqgthBBCCCEnFNrrkBBCCCEkSPqtMjxjTA/gUL88WN/FAmjo9qjBQQdAP9CN8AP1aXBQvwYH9WtwUL8GB/VrcIzhnHvfoNhP/bnX4Sec88X9+Hi9xhjbGYiVBv2BMfbWUOhX6tPgoH4NDurX4KB+DQ7q1+BgjAWkVEJ/Th2u78fHOplQvwYe9WlwUL8GB/VrcFC/BsdJ16/9Fmhxzk+6zu0P1K+BR30aHNSvwUH9GhzUr8FxMvYrJcN79tZAN+AERH0aHNSvwUH9GhzUr8FB/RocAenXfkuGJ4QQQgg52dCIFiGEEEJIkJw0gRZjbCJjbBtjbAtjbCNjLJ0JVjLGtjLGvmKMRTuOjXac3+q4njkuv5Qxlue4/JqBfUaDQw/7dQFjrJAxZuxyH08wxsoZYz8MzLMYXALUp+8zxjYxxnYyxu4amGcyuASoXzcxxn5x/Fw5MM9kcAlQv37n6NNNjLFOxtj4gXk2g0eA+pU+s7roYb++whjb4Tgtd7qPnn1mcc5PihOARADhjt/nAHgfwIUA3nFcdh2AFY7fVwBY5Pj9XcdxMgDFAMIBKAH8AiByoJ/XQJ962K8xADQASrrcRxKAdAA/DPTzGQynAPWpyvFTAaF+XfhAP6+BPgWoXzcBSB3o5zKYToHo1y739ftAP6fBcOprv9JnVkD6dZRTX/4CIMNxvkefWSfNiBbnvIZz3uY4awZgBTAbwFeOy9YDmOn43dPlsQDqOedtnHMLgIMAcoPf8sGtJ/3KOW/knBs93Ec1AHvwWzs0BKhPzY5fNQCOAjAEs81DQSD6FcK+rh87vgmfHeQmDwkB6lfR1QA+DlJTh5QA9Ct9ZnnQw3495PhpB2BznHr8mXXSBFoixlgogKcAPA8gGkCz46oWx3kAiHKcFy+PAVAPIJYxlsIYiwAw3en4k56f/Up6oK99yhj7DMARAD9zzm1BauaQ08d+/QPnfDqA6wG8zhjrc9XoE0WA3gOuAfDfgDduCOtDv9Jnlg896VfG2CIAhznnZb15rP6sDD/gGGNKAJ8AeIZzfoAx1gQg0nG1Dsc7utlxvsXxs4lzzhljiyEMM3YA+A1AVf+1fvDqQb8SPwWiTznnf2CMaQFsYYx9wjk/ELQGDxF97VfOeYPj5zHG2F4AmQB+DV6Lh4ZAvF4ZY9kAOjnnR4LW0CGmL/1Kn1ne9aRfGWPnQvhiNbe3j3fSjGgxxmQAPgCwlnO+1nHxZghztHD83Ozrcs75Fs752RCGt8MA5AW/5YNbD/uV+KGvfepI7FQ5zhoBdDpOJ7UA9WuE4/dwAOMBlAetwUNEAN8DFgH4MOANHKIC0a/0meWuJ/3KGJsK4AkAl3POe/8eOtCJaf11AnA5gHYIyaybAKyEEGiuArAVwNcAYhzHxjjOb3VcL3Nc/hyAnwB8D2DKQD+nwXDqYb/OAPADhHyhHwAsdFx+O4CfATQ6Ls8Y6Oc1lPsUQuKreNtfACwZ6Oc0GE4B6tddjtdqHoArB/o5DYZTgN4DGIQcopiBfj6D5RSgfqXPrL716++Ok3jsZMflPfrMooKlhBBCCCFBctJMHRJCCCGE9DcKtAghhBBCgoQCLUIIIYSQIKFAixBCCCEkSCjQIoQQQggJEgq0CCGEEEKChAItQgghhJAgoUCLEEIIISRI/h/sAMrc/s7cXAAAAABJRU5ErkJggg==\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
551
      "text/plain": [
Sarah Heidekorn's avatar
Sarah Heidekorn committed
552
       "<Figure size 720x792 with 4 Axes>"
Sarah Heidekorn's avatar
Sarah Heidekorn committed
553
554
555
556
557
558
559
560
561
562
563
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "def groupBy():\n",
    "    resU = users(\"/count/groupBy/boundary\"\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
564
    "         ,filter=filter_req          \n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
565
566
567
568
569
570
571
572
573
574
575
    "         ,bpolys=regions\n",
    "         ,time=t_mon)\n",
    "    display(resU.url)\n",
    "    green_u = resU.json()\n",
    "    #display(green_u)\n",
    "    df = pd.DataFrame()\n",
    "    for groupBy in green_u['groupByResult']:\n",
    "        series = pd.Series({row['fromTimestamp']:row['value'] for row in groupBy['result']})\n",
    "        df[groupBy['groupByObject']] = series\n",
    "    df.set_index(pd.to_datetime(df.index),inplace=True)\n",
    "    df.to_pickle(\"./df_users.pkl\")\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
576
    "    df.plot(kind='line', subplots=True, sharex=False, sharey=True, figsize=(10,11), fontsize=9)\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
577
578
579
    "groupBy()"
   ]
  },
580
581
  {
   "cell_type": "markdown",
582
   "id": "revolutionary-sigma",
583
584
   "metadata": {},
   "source": [
Sarah Heidekorn's avatar
Sarah Heidekorn committed
585
    "#### In the graphic above you can see the user numbers of the natural=wood as well as landuse=forest tag over the years"
586
587
   ]
  },
Sarah Heidekorn's avatar
Sarah Heidekorn committed
588
589
590
591
592
  {
   "cell_type": "markdown",
   "id": "confidential-purchase",
   "metadata": {},
   "source": [
593
    "#### Edmonton:\t  \n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
594
    "\n",
595
    "Let's start from the top again.\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
596
    "There's almost no user activity from 2008 up until the end 2010. Notable user activity first starts around 2011 so at the same time as the main increase in density values. One can observe that for certain time periods the user count keeps falling back to low or no user activity at all. Thhhe peak is reached by the end of 2017 but even after, there are still some quite high values. Furthermore, the peak also marks the time of the last notable increase in density information.\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
597
598
    "\n",
    "\n",
599
    "#### Halifax:\t  \n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
600
    "\n",
601
    "For the Halifax region there was nearly no user activity at all up until mid 2010 apart from a very short peak in the very beginning. The first peak in 2010 is in accord with the first strong density increase. However, after that the user numbers stay more or less on the same overall level until 2017 when they are peaking until about June of th same year which appears to be fitting the decreasing density values around this time period either. There's one last peak in 2020.\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
602
603
    "\n",
    "\n",
604
    "#### Vancouver: \n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
605
    "\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
606
    "For the Metro Vancouver region there are only very short timespans of complete user inactivity and an overall increasing trend is observable. The maximum user count is reached around Mid 2020 whilst the first density peak is at the same time as the first peak in user activity 2008. The increasing trend in user counts begins at around 2010, yet shortly after there is a fast decrease in density probably due to wrong or double values that were corrected. This might be related to the CanVec imports as one of the most important data sources.\n",
607
608
609
    "\n",
    "\n",
    "#### Ottawa:    \n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
610
    "\n",
611
    "In Ottawa there are three times of minor user activity until 2009 and subsequently an increasing trend until 2018 with times of lower user activity between 2014 and Mid 2015. The local mapping community also [mentions](https://wiki.openstreetmap.org/wiki/Ottawa#Status) that most of the info is from CanVac data."
Sarah Heidekorn's avatar
Sarah Heidekorn committed
612
613
614
615
   ]
  },
  {
   "cell_type": "code",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
616
   "execution_count": 7,
Sarah Heidekorn's avatar
Sarah Heidekorn committed
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
   "id": "liable-victim",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>region</th>\n",
       "      <th>mean</th>\n",
       "      <th>median</th>\n",
       "      <th>min</th>\n",
       "      <th>max</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>Vancouver</td>\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
652
       "      <td>7</td>\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
653
654
655
656
657
658
659
       "      <td>6.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>25.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>Halifax</td>\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
660
       "      <td>3</td>\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
661
662
663
664
665
666
667
       "      <td>2.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>13.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>Edmonton</td>\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
668
       "      <td>2</td>\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
669
670
671
672
673
674
675
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>7.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>Ottawa</td>\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
676
       "      <td>3</td>\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
677
678
679
680
681
682
683
684
685
       "      <td>3.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>13.0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
Sarah Heidekorn's avatar
Sarah Heidekorn committed
686
687
688
689
690
       "      region  mean  median  min   max\n",
       "0  Vancouver     7     6.0  0.0  25.0\n",
       "1    Halifax     3     2.0  0.0  13.0\n",
       "2   Edmonton     2     1.0  0.0   7.0\n",
       "3     Ottawa     3     3.0  0.0  13.0"
Sarah Heidekorn's avatar
Sarah Heidekorn committed
691
692
693
694
695
696
697
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
Sarah Heidekorn's avatar
Sarah Heidekorn committed
698
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAd8AAAFkCAYAAABhDTHuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAYSUlEQVR4nO3df3Dcd33n8dcriirFJjgNmDIt53h6R2GpKKURbS+nUAtySSfJ3XBpezOmOQ6y2PX1useMnWI3yzRlDpm4NJl2RDlhnyjh4BZKaFNqHw09UIIXUjIylx4pmrSZlnTgyNWB/HDt+CLM+/7Yr2zZyNbPfX+l3edjRqP9fr771fe9+9X3+9rP9/vVR44IAQCAPBeVXQAAAN2G8AUAIBnhCwBAMsIXAIBkhC8AAMkIXwAAkl2ctaIXv/jFsXnz5qzVAQBQqiNHjjwZERvnmpcWvps3b9bk5GTW6gAAKJXtx883j9POAAAkI3wBAEhG+AIAkIzwBQAgGeELAEAywhcAgGSELwAAyQhfAACSEb4AACQjfAGsSY1GQwMDA+rp6dHAwIAajUbZJQELNu/wkrZfK+n9kk5J+q6kt0vaJKkh6dHiabsi4ki7igSA2RqNhur1usbHxzU0NKRms6lqtSpJ2rp1a8nVAfNzRFz4CfZLJR2PiGO2r5e0VdK4pJsj4u0LXdHg4GAwtjOAlTAwMKDR0VENDw+fbpuYmFCtVtMjjzxSYmXAGbaPRMTgXPPmPe0cEU9ExLFi8nm1er+SdJ3tw7ZHbV9ynhVvtz1pe/Lo0aNLKh4AzjU1NaWhoaGz2oaGhjQ1NVVSRcDiLPiar+31kkYkvU/SEUkvj4irJT0r6da5lomI/RExGBGDGzfO+V+VAGDRKpWKms3mWW3NZlOVSqWkioDFWVD42u6V9AlJ742Ir0XEsYg4Wcz+mKQ5u9UA0A71el3ValUTExOanp7WxMSEqtWq6vV62aUBC7KQG64ukvRRSfdGxL1F24aIeKZ4yht05sYrAGi7mZuqarWapqamVKlUNDIyws1WWDMWcsPVL0r6sKSZu6W+KmlK0i2STkh6UtItEfH0hX4ON1wBALrJhW64mrfnGxH3SLpnjlkfWG5hAAB0IwbZAAAgGeELAEAywhcAgGSELwAAyQhfAACSEb4AACQjfAEASEb4AgCQjPAFACAZ4QsAQDLCFwCAZIQvAADJCF8AAJIRvgAAJCN8AQBIRvgCAJCM8AUAIBnhCwBAMsIXAIBkhC8AAMkIXwAAkhG+AAAkI3wBAEhG+AIAkIzwBQAgGeELAEAywhcAgGSELwAAyQhfAACSEb4AACQjfAEASEb4AgCQjPAFACAZ4QsAQDLCFwCAZIQvAADJCF8AAJIRvgAAJCN8AQBIRvgCWJMajYYGBgbU09OjgYEBNRqNsksCFuzisgsAgMVqNBqq1+saHx/X0NCQms2mqtWqJGnr1q0lVwfMzxGRsqLBwcGYnJxMWReAzjYwMKDR0VENDw+fbpuYmFCtVtMjjzxSYmXAGbaPRMTgnPMIXwBrTU9Pj06ePKne3t7TbdPT0+rv79epU6dKrAw440LhyzVfAGtOpVJRs9k8q63ZbKpSqZRUEbA4hC+ANader6tarWpiYkLT09OamJhQtVpVvV4vuzRgQbjhCsCaM3NTVa1W09TUlCqVikZGRrjZCmsG13wBAGgDrvkCALCKEL4AACQjfAEASEb4AgCQbN7wtf1a21+0/QXbn7f9o24ZtX3Y9kHbl2cUCwBAJ1hIz/dbkn4+Il4v6XckvVvSdZLWRcTVkv5Q0jvbVyIAAJ1l3vCNiCci4lgx+byk70raIulg0fankl7fluoAAOhAC77ma3u9pBFJ75N0uaSnillPF9NzLbPd9qTtyaNHjy6zVACdznbKF1C2BYWv7V5Jn5D03oj4mqTvSLqsmL1BZ4L4LBGxPyIGI2Jw48aNK1AugE4WEYv+umL3wUUvA5RtITdcXSTpo5LujYh7i+YHJF1fPL6+mAYAAAuwkLGdb5J0g6Qfsn2zpK9KeoekG20flvSspLe0r0QAADrLvOEbEfdIumeOWf9x5csBAKDzMcgGAADJCF8AAJIRvgAAJCN8AQBIRvgCAJCM8AUAIBnhCwBAMsIXAIBkhC8AAMkIXwAAkhG+AAAkI3wBAEhG+AIAkIzwBQAgGeELAEAywhcAgGSELwAAyQhfAACSEb4AACQjfAEASEb4AgCQjPAFACAZ4QsAQDLCFwCAZIQvAADJCF8AAJIRvgAAJCN8AQBIRvgCAJCM8AUAIBnhCwBAMsIXAIBkhC8AAMkIXwAAkhG+AAAkI3wBAEhG+AIAkIzwBQAgGeELAEAywhcAgGSELwAAyQhfAACSEb4AACQjfAEASEb4AgCQjPAFACAZ4QsAQDLCFwCAZIQvAADJCF8AAJIRvgAAJJs3fG3fZ/uo7XcV01tsf8v2/cXXle0vEwCAznHxAp5TlXSNpJfNajsUEW9vT0kAAHS2eXu+EfGNOZqvs33Y9qjtS9pQFwAAHWsp13yPSHp5RFwt6VlJt57viba32560PXn06NGl1ggAQEdZdPhGxLGIOFlMfkzS4AWeuz8iBiNicOPGjUutEQCAjrLo8LW9YdbkGyQ9unLlAADQ+ea94cr2AUlXSeqzPSjps7ZvkXRC0pOSbmlviQAAdJZ5wzcits3R/IE21AIAQFdgkA0AAJIRvgAAJCN8AQBIRvgCAJCM8AUAIBnhCwBAMsIXAIBkhC8AAMkIXwAAkhG+AAAkI3wBAEhG+AIAkIzwBQAgGeELAEAywhcAgGSELwAAyQhfdK1Go6GBgQH19PRoYGBAjUaj7JKArsC+J11cdgFAGRqNhur1usbHxzU0NKRms6lqtSpJ2rp1a8nVAZ2Lfa+Fni+60sjIiMbHxzU8PKze3l4NDw9rfHxcIyMjZZcGdDT2vRZHRMqKBgcHY3JyMmVdwHx6enp08uRJ9fb2nm6bnp5Wf3+/Tp06VWJlWKzNew7p63fcUHYZWKBu2vdsH4mIwbnm0fNFV6pUKmo2m2e1NZtNVSqVkioCugP7Xgvhi65Ur9dVrVY1MTGh6elpTUxMqFqtql6vl10a0NHY91q44QpdaebGjlqtpqmpKVUqFY2MjHTVDR9AGdj3WrjmC2BN45ovViuu+QIAsIoQvgAAJCN8AQBIRvgCAJCM8EXXqtVq6u/vl2319/erVquVXRLQFdj3CF90qVqtprGxMe3du1fHjx/X3r17NTY21pUHASAT+14hIlK+rrzyygBWi76+vrjzzjvParvzzjujr6+vpIqwVFfsPlh2CViEbtr3JE3GeTKRv/NFV7Kt48ePa926dafbTpw4ofXr1ytrn8DK4O9815Zu2vf4O1/gHH19fRobGzurbWxsTH19fSVVBHQH9r0WhpdEV9q2bZt2794tSdqxY4fGxsa0e/du7dixo+TKgM7GvtdC+KIrjY6OSpJuu+027dq1S319fdqxY8fpdgDtwb7XwjVfAGsa13yxWnHNFwCAVYTwBQAgGeELAEAywhcAgGSEL7pWo9HQwMCAenp6NDAwoEajUXZJALoEf2qErtRoNFSv1zU+Pq6hoSE1m01Vq1VJ0tatW0uuDkCno+eLrjQyMqLx8XENDw+rt7dXw8PDGh8f18jISNmlAegChC+60tTUlIaGhs5qGxoa0tTUVEkVAegmhC+6UqVSUbPZPKut2WyqUqmUVBGAbkL4oivV63VVq1VNTExoenpaExMTqlarqtfrZZcGoAtwwxW60sxNVbVaTVNTU6pUKhoZGeFmKwApCF90ra1btxK2AErBaWcAAJIRvgAAJCN8AQBINm/42r7P9lHb7yqmbXvU9mHbB21f3v4ygZVXq9XU398v2+rv71etViu7JKArMLTrwnq+VUm/Pmv6OknrIuJqSX8o6Z3tKAxop1qtprGxMe3du1fHjx/X3r17NTY2RgADbTYztOvo6KhOnjyp0dFR1ev1rgvgecM3Ir5xTtMWSQeLx38q6fUrXBPQdgcOHNC+ffu0c+dOrVu3Tjt37tS+fft04MCBsksDOhpDu7Y4IuZ/kv1WSS+LiPfY3i/pv0fE/bYtaSoiXnme5bZL2i5JmzZtuvLxxx9fucqBZbCt48ePa926dafbTpw4ofXr12sh+wQW5jXv/qyeeW667DKWbcMlvfrL268tu4yO0NPTo5MnT6q3t/d02/T0tPr7+3Xq1KkSK1t5to9ExOBc85byd77fkXRZ8XiDpKfO98SI2C9pvyQNDg5yRMOq0dfXp7GxMe3cufN029jYmPr6+kqsqvM889y0vn7HDWWXsWyb9xwqu4SOMTO06/Dw8Om2bhzadSl3Oz8g6fri8fXFNLCmbNu2Tbt379Zdd92lEydO6K677tLu3bu1bdu2sksDOhpDu7bM2/O1fUDSVZL6bA9KuknSjbYPS3pW0lvaWyKw8kZHRyVJt912m3bt2qW+vj7t2LHjdDuA9mBo15YFXfNdCYODgzE5OZmyLgCrw+Y9hzrmtHMnvA7kutA1XwbZAAAgGeELAEAywhcAgGSELwAAyQhfAACSEb4AACQjfAEASLaU4SUBAPg+reH+268Txl+n5wsAWBERsaivK3YfXPQynRC8EuELAEA6whcAgGSELwAAyQhfAACSEb4AACQjfAEASEb4AgCQjPAFACAZ4QsAQDLCFwCAZIztjI7D+LIAVjt6vug4jC8LYLUjfAEASEb4AgCQjPAFACAZ4QsAQDLCFwCAZIQvAADJCF8AAJIRvgAAJCN8AQBIRvgCAJCMsZ3nwNjAAIB2ouc7h6WM87uU8YEBAN2J8AUAIBnhCwBAMsIXAIBkhC8AAMkIXwAAkhG+AAAkI3wBAEhG+AIAkIzwBQAgGeELAEAyxnYG0DaXVvbo1XfvKbuMZbu0Ikk3lF0GOgjhC6Btjk3doa/fsfZDa/OeQ2WXgA7DaWcAAJIRvgAAJCN8AQBIRvgCAJCM8AUAIBnhCwBAMsIXAIBkywpf28/Zvr/4qq5UUQAAdLLlDrLxzYjYshKFAADQLZZ72vmlth+w/Ue2N69EQQAAdLrl9nw3R8STtq+TNC7pjbNn2t4uabskbdq0aZmrAgBkec27P6tnnptu+3raPXTnhkt69Ze3X9vWdSzFssI3Ip4svt9n+/fnmL9f0n5JGhwcjOWsCwCQ55nnphmXu42WfNrZ9gts9xSPf0LSkytWFQAAHWw5Pd9XSfqg7WOSQtKvrExJAAB0tiWHb0Q8JOm1K1gLAABdgUE2AABIRvgCAJCM8AUAIBnhCwBAMsIXAIBkhC8AAMkIXwAAki13bGegrRhfFkAnInyxqjG+LIBOxGlnAACSEb4AACQjfAEASEb4AgCQjPAFACAZ4QsAQDLCFwCAZIQvAADJCF8AAJJ1/AhXWcMTSgxRCMylE0b32nBJb9klpLu0skevvntP2WUs26UVSVp9o+R1fPh2yvCEUmccxNBdMva9zXsOdcw+vpocm7qjI97X1Xrc5LQzAADJCF8AAJIRvgAAJCN8AQBIRvgCAJCM8AUAIBnhCwBAMsIXAIBkhC8AAMkIXwAAknX88JJY2xhfFijPah2acTFW67jchC9WNcaXBcrBuNztxWlnAACSEb4AACQjfAEASEb4AgCQjPAFACAZ4QsAQDLCFwCAZIQvAADJCF8AAJIRvgAAJOv44SU7ZWxgqXvHB+6EoRlX6/iyAMrR8eHbKWMDS50RQovF+LIAOhGnnQEASEb4AgCQjPAFACAZ4QsAQDLCFwCAZIQvAADJCF8AAJItK3xtv9X2l2x/0fZPrVRRAAB0siUPsmH7ByX9J0k/K+lHJP03SUMrVBcAAB1rOT3fn5F0OCKej4i/k/QC230rVBcAAB1rOcNLXi7pqVnTzxRt35ppsL1d0nZJ2rRp0zJWtTyLHZbx8X03tqmSs12x++Cins/4wAtje/HL7Fv8eiJi8Qvhgpay7aTFbz+2XXuw7y3ccsL3O5IumzW9oWg7LSL2S9ovSYODg6W8W0sas/eOtb9hu1kn7Jjdim23trH9Fm45p52/LGnIdq/tTZL+MSL+3wrVBQBAx1pyzzcinrL9AUkPSApJ71ixqgAA6GDL+peCEfEhSR9aoVoAAOgKDLIBAEAywhcAgGSELwAAyQhfAACSEb4AACQjfAEASEb4AgCQjPAFACAZ4QsAQDLCFwCAZM76LxS2j0p6PGVl5XixpCfLLgJLwrZb29h+a1enb7srImLjXDPSwrfT2Z6MiMGy68Dise3WNrbf2tXN247TzgAAJCN8AQBIRviunP1lF4AlY9utbWy/tatrtx3XfAEASEbPFwCAZF0VvrY3237K9v3F1+fOmX+z7d9q07rfavuF7fjZOL1t/+c5bY9d4PmPFd9/0vavF48HbD9k+1Ptrba72J6w/epZ0y+0/Te2u+r406lsv872520/UHx/ne3LbL9l1nO22P6JMutcbbrxl/9IRGwpvt6YuN63SiJ8V5mIeDgi3ldM/itJ/yUifqHMmjrQRyW9edb0TZL+OCK+V1I9C2K7p+waVjvbGyTdLemWiPg5SbcU01dIesusp26RRPjO0o3hexbbryp6O4ckXTur/X7bv118kvu47e22P2f7sO11xXNut/2g7S/bvqFo+y3b47Y/bfth26+0/QZJPynpk7ZH3fJB203bX7L908WyH7b9ftuHbP+F7ZfkvyOdxfZw0fM6bPtPbPefM3+L7f9q+0pJvyLpnbbfM9dytl9U/K68pPi9+YLtHyjnla0p90j6N7ZdTL9Z0suL9/crtrdLp7fFZ2w3bH/V9i8V7Zts/1nRs/qc7Yts/1ixjz5g+xO2Lzn37Messxufsv2a4vE/mTnjZfuXiu3btP2bs2q4z/YnJY1kvUFr2I2S7o2Ir0tS8f1P1NrmVxbb6JfV6nzUi+ke23cXj79i+19LUrFtL7f9atvP27606EXvL+bfVyzzkO1/XsJrXVEXl11ACa60fX/x+JuSXiDpHRHxoO0D5zy3GRHvtP1nktZHxBtt/66k62z/naSrJV0laYOkh2x/pljuWERUbb9Z0tsj4lbbD0u6OSK+YftNknojYsj2j0r6uKSfLpZ9LCJ+zfZtkv6tpPe34T3oVLO37YyHImJYkmzvU+s9/ci5C0bEEdsfVuv9/6jt9ecuFxEfsX2rWp/sXyjp30fE8+17OZ0hIp6x/Yikq4pAfImkfxERx233Sfqq7T8onv4StQ7oPyTp05I+Kel3JN0VEZ+1fVFEfM/2b0v6zYj4QhGc24rnz+UjavXCdkn6ZUkfs/2DxfTVETFt+4995tT4D0u6MSKmV/it6EQvk/T357Q9LumApGsj4hpJsv1yFftWMf2rxfZ/kaQH1Np290saLn7mZyS9XtKApIni595ULFOR9PuS3tDOF9Zu3Ri+R2Z+ISTJ9tckPVRMflmtDT/jfxXfvyHp4VmPL5f0A5L+Ilq3iz9t+x/UGipNko4U3/9e0r+co4ZXSPqSJEXE3xYHgtP1zVr2ny7qleHcbfuYpB+3/R5JfWod0J9d4M+ac7niYP9eSf87Is57TRnf52NqBd+jan3Y/A/Fh9BTagXuzFmehyPilKT/Y/uyou3HVRyAZ52q/jEV+1Dx/Sa1elyzzfS0/4ek/+zWaeRfUOug/Uq1To3+edEhv6yY/kdJkwTvgn1T0qvOadsk6fj5FnDrWv/ttq+S9F213ndJ+pykm9U6jr67eFyR9Dbbl0j6PduvUOt35kdW8kWUoetPO0t6TNLM8GavO2denOex1TqI/KxbLlPr4PHkeZ4rSc/rzIedR9XqMavo+T59gfVgeeqSbi+uR31aC39P51zOdlWtD2v/zHZXDou3RIckXaPWAbWh1rXBn5N0naRndGa7zPW3j3+l1jXDmQO3JP21in2o+P6opKck/XCxT75UxQG6CNL7Jf2GpL+OiGOS/latff+aiNgi6afU6m1JrYM7FuagpDfZvkJqXSKQ9CZJf6CzO3ezj3+vUev679WSflHSzAeqhyT9jKS+iPiKWh+6XhQRT0j6eUmnIuJqSb+qDjg2dmPP99xTk78m6UO2v61FDPAdEQ/b/pKkB9X6ELOrOB12vkX+SNJ4scztkm6w3ZTUI6m2+JeBBfq4Wu/7o2od5Bfa8/2+5Wy/Uq1rV29U68PWp2xfUxzMcQER8Xyx371CrbM6fyWpKWlK0rfnWfxWSQdsv0vStO1rJe2R9EG3drh/kPTvIuK54hLRg2odyP/vrJ9xt1pntm4o6vl2cQnp87ZPSZrW2TcIYQEi4mnbb5P04eKD0fckvU3SE5Kec+svBz4g6c8l/a7tG9V6n3vV+kD0sIrOR0R81/YTOnOW8QlJf1M8flDSbxTX9L/Y9heWgEE2AABIxmlnAACSEb4AACQjfAEASEb4AgCQjPAFACAZ4QsAQDLCFwCAZIQvAADJ/j+VwuRGHS1yNwAAAABJRU5ErkJggg==\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
699
      "text/plain": [
Sarah Heidekorn's avatar
Sarah Heidekorn committed
700
       "<Figure size 576x432 with 1 Axes>"
Sarah Heidekorn's avatar
Sarah Heidekorn committed
701
702
703
704
705
706
707
708
709
710
711
712
713
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "#read output dataset:\n",
    "df_users = pd.read_pickle(\"./df_users.pkl\")\n",
    "\n",
    "val_u = {'region':['Vancouver', 'Halifax', 'Edmonton', 'Ottawa'], \n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
714
    "'mean': [7, 3, 2, 3], \n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
715
716
717
    "'median': [6.0, 2.0, 1.0, 3.0], 'min':[0.0, 0.0, 0.0, 0.0], 'max':[25.0, 13.0, 7.0, 13.0]}\n",
    "val_users = pd.DataFrame(val_u)\n",
    "\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
718
    "df_users.plot(kind='box', figsize=(8,6), fontsize=9)\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
719
    "display (val_users)\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
720
    "\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
721
722
723
724
725
726
727
728
729
730
731
732
733
    "\n",
    "\n",
    "#The table was created by searching for the mean, median, minimum and maximum values of each region.\n",
    "#You can do it with numpy, like so:\n",
    "#Ottawa, Ontario:\n",
    "#Oarray = df['Ottawa']\n",
    "#OttMean = np.mean(Oarray)\n",
    "#OttMedian = np.median(Oarray)\n",
    "#OttMin = np.min(Oarray)\n",
    "#OttMax = np.max(Oarray)\n",
    "#display(OttMean, OttMedian, OttMin, OttMax) -> to look at the values"
   ]
  },
734
735
  {
   "cell_type": "markdown",
736
   "id": "bibliographic-vatican",
737
738
   "metadata": {},
   "source": [
Sarah Heidekorn's avatar
Sarah Heidekorn committed
739
740
    "When looking at the minimum value of the user data output, all the regions have the value 0, so during the observed time intervals, there were periods where no user performed any modification on features fitting to the analyzed filter. \n",
    "Again, Edmonton had the lowest values (mean, median & maximum), which might be yet another reason for the overall lower values in density of tree related polygon-tags.\n",
741
    "\n",
742
743
744
745
746
747
    "Halifax and Ottawa both have the same maximum value yet Ottawa is higher in mean as well as median. And the highest overall user-values are to be found for Vancouver.\n",
    "\n",
    "**User activity Ranking:** \n",
    "1. Vancouver\n",
    "2. Ottawa\n",
    "3. Halifax\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
748
    "4. Edmonton"
749
750
751
752
   ]
  },
  {
   "cell_type": "markdown",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
753
   "id": "blind-trademark",
754
755
756
   "metadata": {},
   "source": [
    "### Final Ranking:\n",
757
    "\n",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
758
759
760
761
762
763
    "Since both Vancouver & Ottawa made it to the top in one of the rankings it appears to be useful to announce 2 winners this time: Vancouver in terms of user counts and Ottawa in terms of overall density development.\n",
    "This leaves us with following ranking:\n",
    "\n",
    "1. Vancouver & Ottawa\n",
    "2. Halifax\n",
    "3. Edmonton"
764
765
   ]
  },
Sarah Heidekorn's avatar
Sarah Heidekorn committed
766
767
768
  {
   "cell_type": "code",
   "execution_count": null,
Sarah Heidekorn's avatar
Sarah Heidekorn committed
769
   "id": "passive-trader",
Sarah Heidekorn's avatar
Sarah Heidekorn committed
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.7"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}